Skip to main content

Numerical Modeling of the Steel Fiber Reinforced Concrete Behavior Under Combined Tensile and Shear Loading by a Micromechanical Model Taking into Account Fiber Orientation

  • Conference paper
  • First Online:
Fibre Reinforced Concrete: Improvements and Innovations II (BEFIB 2021)

Part of the book series: RILEM Bookseries ((RILEM,volume 36))

Included in the following conference series:

  • 1963 Accesses

Abstract

The mechanical behavior of steel fiber reinforced concrete (SFRC) is strongly dependent on the cracks bridging brought by fibers. Thus, the fibers orientation in SFRC is one key factor. This research extends a micromechanics-based model to describe the shear transfer in addition to tensile mechanisms at the crack surface and to establish a base at micro-scale for the further homogenization at the macro-scale. The shear effect is described as a function of the fiber pullout process, the stress across the cracks is then derived from the integration of the product of the fiber pullout function by the probability of the fiber location and orientation. The simulation results provide the SFRC behavior under mixed-mode displacement of crack (slip and opening). The influence of material parameters is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Resplendino, J., Toutlemonde, F.: Designing and Building with UHPFRC. Wiley, Hoboken (2011)

    Google Scholar 

  2. Rossi, P.: Les bétons de fibres métalliques. Presses De L’ENPC (1998)

    Google Scholar 

  3. Casanova, P.: Bétons renforcés de fibres métalliques: du matériau à la structure. Etude expérimentale et analyse du comportement de poutres soumises à la flexion et à l’effort tranchant. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (1995)

    Google Scholar 

  4. Khaloo, A.R., Kim, N.: Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear. Mater. J. 94(6), 592–601 (1997)

    Google Scholar 

  5. Kaufmann, W., Amin, A., Beck, A., Lee, M.: Shear transfer across cracks in steel fibre reinforced concrete. Eng. Struct. 186, 508–524 (2019)

    Article  Google Scholar 

  6. Herrera, A.: Fonctionnement des jonctions âmes-membrures en Béton Fibrés à Ultra-Hautes Performances (BFUP). Ph.D. thesis, Université Paris-Est (2017)

    Google Scholar 

  7. Morton, J., Groves, G.W.: The cracking of composites consisting of discontinuous ductile fibres in a brittle matrix—effect of fibre orientation. J. Mater. Sci. 9(9), 1436–1445 (1974)

    Article  Google Scholar 

  8. Chanvillard, G.: Analyse expérimentale et modélisation micromécanique du comportement des fibres d’acier tréfilées, ancrées dans une matrice cimentaire, vol. OA12. LCPC (1992)

    Google Scholar 

  9. Lee, G., Foster, S.: Behaviour of Steel Fibre Reinforced Mortar in Shear I: Direct Shear Testing, University of New South Wales Concrete Testing Laboratory, Scientific UNICIV No. R-444, October 2006

    Google Scholar 

  10. Foster, S.J., Lee, G.G., Htut, T.N.S.: Radiographic imaging for the observation of Modes I and II fracture in Fibre Reinforced Concrete. In: Proceedings of the FraMCos6, vol. 3, pp. 1457–1465, June 2007

    Google Scholar 

  11. Htut, T.N.S., Foster, S.J.: Unified model for mixed mode fracture of steel fibre reinforced concrete, p. 9 (2010)

    Google Scholar 

  12. Li, V.C., Wang, Y., Backer, S.: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J. Mech. Phys. Solids 39(5), 607–625 (1991)

    Article  Google Scholar 

  13. Wu, C., Leung, C.K.Y., Li, V.C.: Derivation of crack bridging stresses in engineered cementitious composites under combined opening and shear displacements. Cem. Concr. Res. 107, 253–263 (2018)

    Article  Google Scholar 

  14. Guenet, T.: Modélisation du comportement des bétons fibrés à ultra-hautes performances par la micromécanique: effet de l’orientation des fibres à l’échelle de la structure. Ph.D. thesis, Université Paris-Est, Université Laval (2016)

    Google Scholar 

  15. NF P18-710. Complément national à l’Eurocode 2 - Calcul des structures en béton : règles spécifiques pour les bétons fibrés à ultra-hautes performances (BFUP). AFNOR (2016)

    Google Scholar 

  16. NF P18-470. Bétons fibrés à ultra hautes performances - Spécification, performance, production et conformité. AFNOR (2016)

    Google Scholar 

  17. fib Model Code for Concrete Structures 2010. Ernst & Sohn (2013)

    Google Scholar 

  18. Katz, A., Li, V.C.: Inclination angle effect of carbon fibers in cementitious composites. J. Eng. Mech. 121(12), 1340–1348 (1995)

    Article  Google Scholar 

  19. Naaman, A.E., Shah, S.P.: Pull-out mechanism in steel fiber-reinforced concrete, vol. 102. American Society of Civil Engineers ASCE (1976)

    Google Scholar 

  20. Alwan, J., Naaman, A.E., Guerrero, P.: Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concr. Sci. Eng. 1(1), 15–25 (1999)

    Google Scholar 

  21. Robins, P., Austin, S., Jones, P.: Pull-out behaviour of hooked steel fibres. Mater. Struct. 35(7), 434–442 (2002)

    Article  Google Scholar 

  22. Timoshenko, S.: Strength of Materials. Part 1: Elementary Theory and Problems. D. Van Nostrand Company, Incorporated (1940)

    Google Scholar 

  23. Leung, C.K.Y., Li, V.C.: Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites. J. Mech. Phys. Solids 40(6), 1333–1362 (1992)

    Article  Google Scholar 

  24. Li, B., Maekawa, K., Okamura, H.: Contact density model for stress transfer across cracks in concrete. J. Fac. Eng. Univ. Tokyo 40, 9–52 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Tam Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vu, DT., Toutlemonde, F., Terrade, B., Marchand, P., Bouteille, S. (2022). Numerical Modeling of the Steel Fiber Reinforced Concrete Behavior Under Combined Tensile and Shear Loading by a Micromechanical Model Taking into Account Fiber Orientation. In: Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J. (eds) Fibre Reinforced Concrete: Improvements and Innovations II. BEFIB 2021. RILEM Bookseries, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-83719-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83719-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83718-1

  • Online ISBN: 978-3-030-83719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics