Skip to main content

An Absolute Continuous Bivariate Inverse Generalized Exponential Distribution: Properties, Inference and Extensions

  • Chapter
  • First Online:
Methodology and Applications of Statistics

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 599 Accesses

Abstract

The aim of this paper is to introduce an absolutely continuous bivariate inverse generalized exponential (BIGE) distribution. The proposed distribution has been obtained by removing the singular component from the BIGE distribution similarly as the Block and Basu absolute continuous bivariate exponential distribution. This distribution has four parameters, and due to this, the joint probability density function can take variety of shapes. This distribution can be used quite effectively if there are no ties in the bivariate data set and particularly if the marginals are from a heavy tailed distribution. We have developed different properties of this distribution and provided classical inference of the unknown parameters. The maximum likelihood (ML) estimators cannot be obtained in closed form and one needs to solve a four-dimensional optimization problem to compute the ML estimators in this case. To avoid that, we propose to use the expectation maximization (EM) algorithm to compute the ML estimators of the unknown parameters. The analysis of one data set has been performed to see the effectiveness of the proposed algorithm and extended the results to the multivariate case also. Finally, we conclude the paper with several open problems for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja, J.C., Nash, S.W.: The generalized Gompertz-Verhulst family of distributions. Sankhya Ser. A 29, 141–156 (1967)

    MathSciNet  MATH  Google Scholar 

  • Al-Hussaini, E.K., Ahsanullah, M.: Exponentiated Distributions. Atlantis Press, Paris (2015)

    Book  Google Scholar 

  • Alqallaf, F.A., Kundu, D.: A Bivariate Inverse Generalized Exponential Distribution and its Applications in Dependent Competing Risks Model. Submitted for publication (2020)

    Google Scholar 

  • Bemis, B., Bain, L.J., Higgins, J.J.: Estimation and hypothesis testing for the parameters of a bivariate exponential distribution. J. Amer. Stat. Assoc. 67, 927–929 (1972)

    Article  Google Scholar 

  • Block, H., Basu, A.P.: A continuous bivariate exponential extension. J. Amer. Stat. Assoc. 69, 1031–1037 (1974)

    MathSciNet  MATH  Google Scholar 

  • Cai, J., Shi, Y., Liu, B.: Analysis of incomplete data in the presence of dependent competing risks from Marshall-Olkin bivariate Weibull distribution under progressive hybrid censoring. Commun. Stat. - Theory Methods 46, 6497–6511 (2017)

    Article  MathSciNet  Google Scholar 

  • Dinse, G.E.: Non-parametric estimation of partially incomplete time and types of failure data. Biometrics 38, 417–431 (1982)

    Article  Google Scholar 

  • Feizjavadian, S.H., Hashemi, R.: Analysis of dependent competing risks in presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 82, 19–34 (2015)

    Article  MathSciNet  Google Scholar 

  • Gupta, R.D., Kundu, D.: Generalized exponential distribution. Aust. N. Z. J. Stat. 41, 173–188 (1999)

    Article  MathSciNet  Google Scholar 

  • Gupta, R.D., Kundu, D.: Generalized exponential distribution: existing methods and recent developments. J. Stat. Plann. Inference 137, 3537–3547 (2007)

    Article  Google Scholar 

  • Johnson, R.A., Wichern, D.W.: Appl. Mult. Anal., 4th edn. Prentice-Hall, New Jersey (1999)

    Google Scholar 

  • Kundu, D.: Parameter estimation of the partially complete time and type of failure data. Biom. J. 46, 165–179 (2004)

    Article  MathSciNet  Google Scholar 

  • Kundu, D., Gupta, R.D.: Bivariate generalized exponential distribution. J. Multivar. Anal. 100, 581–593 (2009)

    Article  MathSciNet  Google Scholar 

  • Louis, T.A.: Finding the observed information matrix when using the EM algorithm. J. Roy. Stat. Soc. B 44, 226–233 (1982)

    MathSciNet  MATH  Google Scholar 

  • Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Amer. Stat. Assoc. 62, 30–44 (1967)

    Article  MathSciNet  Google Scholar 

  • Mudholkar, G.S., Srivastava, D.K.: Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliab. 42, 299–302 (1993)

    Article  Google Scholar 

  • Murthy, D.N.P., Xie, M., Jiang, R.: Weibull Models. Wiley, New-York (2004)

    MATH  Google Scholar 

  • Nadarajah, S.: The exponentiated exponential distribution; a survey. Adv. Stat. Anal. 95, 219–251 (2011)

    Article  MathSciNet  Google Scholar 

  • Oguntunde, P.E., Adejumo, A.O.: The generalized inverted generalized exponential distribution with an application to a censored Data. J. Stat. Appl. Probab. 4, 223–230 (2015)

    Google Scholar 

  • Pradhan, B., Kundu, D.: Bayes estimation for the Block and Basu bivariate and multivariate Weibull distributions. J. Stat. Comput. Simul. 86, 170–182 (2016)

    Article  MathSciNet  Google Scholar 

  • Shen, Y., Xu, A.: On the dependent competing risks using Marshall-Olkin bivariate Weibull model: parameter estimation with different methods. Commun. Stat. - Theory Methods 47, 5558–5572 (2018)

    Article  MathSciNet  Google Scholar 

  • Verhulst, P.F.: Recherches mathematique sur la loi d’-accroissement do la population. Nouvelles Memoires de l’Academie Royale des Sciences et Belles-Lettres de Bruxelles [i.e. Mémoires, Series 2], 18:38 pp (1945)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank two unknown reviewers and Professor Barry C. Arnold for providing some constructive suggestions which had helped to improve the manuscript significantly. Part of the work has been funded by a grant from the Science and Engineering Research Board, Government of India, Grant no. SERB MTR/2018/000179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Theorem 1

Proof

(a) It is clear that \(f_{U,V}(u,v)\) is continuous in \(S_1 \cup S_2\). Since \(f_{U,V}(x,x) = \lim _{u,v \rightarrow x} f_{U,V}(u,v)\), it follows that \(f_{U,V}(u,v)\) is continuous in \(S_0 \cup S_1 \cup S_2\). Since for all \(0< u,v < \infty \),

$$ f_{U,V}(0,0) = f_{U,V}(\infty , \infty ) = f_{U,V}(u,0) = f_{U,V}(u, \infty ) = f_{U,V}(0, v) = f_{U,V}(\infty , v) = 0, $$

that \(f_{U,V}(u,v)\) has a local maximum. It can be easily checked by taking derivatives of \(\ln f_{U,V}(u,v)\) that \(f_{U,V}(u,v)\) does not have any critical point in the region \(S_1 \cup S_2\), hence \(f_{U,V}(u,v)\) does not have any critical point in the region \(S_1 \cup S_2\), hence it does not have any local maximum in \(S_1 \cup S_2\). Therefore, in this case, the local maximum will be at \(S_0\). By taking derivative with respect to x of \(\ln f_{U,V}(x,x)\) and equating it to zero, we can get one needs to solve the Eq. (9). It can be easily seen that the left-hand side of (9) is a decreasing function of x, and it decreases from \(\infty \) to -4. Hence, it has a unique solution.

(b) Note that since \(\alpha _1 > 1\) and \(\alpha _2 + \alpha _0 < 1\), it can be easily seen by taking partial derivatives of \(\ln f_{U,V}(u,v)\) that \(f_{U,V}(u,v)\) has a critical point at \((x_1, x_2)\), where \(x_1\) and \(x_2\) are solutions of the non-linear Eqs. (10) and (11), respectively. Clearly, \(x_1 < 1/2\), since \(\alpha _1 > 1\) and \(x_2 < 1/2\), since \(\alpha _2 + \alpha _0 < 1\). Hence, \((x_1, x_2) \in S_1\). Uniqueness follows using the same argument as in (a). It can be easily checked that \(f_{U,V}(u,v)\) does not have a critical point in \(S_2\).

(c) Follows similarly as in (b).     \(\square \)

Appendix 2: Observed Fisher Information Matrix

Using the same notation as Louis (1982), the observed Fisher information matrix can be written as

$$ {{\boldsymbol{F}}}_{obs} = {{\boldsymbol{B}}} - {{\boldsymbol{S}}}{{\boldsymbol{S}}}^{\top }, $$

here \({{\boldsymbol{B}}}\) is the negative of the second derivative of the log-likelihood function and \({{\boldsymbol{S}}}\) is the derivative vector. We provide the elements of the matrix \({{\boldsymbol{B}}}\) and the vector \({{\boldsymbol{S}}}\). We will use the following notation for brevity.

$$ a_{11} = \sum _{i \in I_1} \frac{1}{u_i^2 (1 - e^{-\frac{\widehat{\lambda }}{u_i}})^2}, \ \ \ a_{12} = \sum _{i \in I_2} \frac{1}{u_i^2 (1 - e^{-\frac{\widehat{\lambda }}{u_i}})^2}, $$
$$ a_{22} = \sum _{i \in I_2} \frac{1}{v_i^2 (1 - e^{-\frac{\widehat{\lambda }}{v_i}})^2}, \ \ \ a_{21} = \sum _{i \in I_1} \frac{1}{v_i^2 (1 - e^{-\frac{\widehat{\lambda }}{v_i}})^2} $$
$$ b_{11} = \sum _{i \in I_1} \frac{1}{u_i (1 - e^{-\frac{\widehat{\lambda }}{u_i}})}, \ \ \ b_{12} = \sum _{i \in I_2} \frac{1}{u_i (1 - e^{-\frac{\widehat{\lambda }}{u_i}})}, $$
$$ b_{22} = \sum _{i \in I_2} \frac{1}{v_i (1 - e^{-\frac{\widehat{\lambda }}{v_i}})}, \ \ \ b_{21} = \sum _{i \in I_1} \frac{1}{v_i (1 - e^{-\frac{\widehat{\lambda }}{v_i}})} $$
$$ c_{11} = \sum _{i \in I_1} \frac{1}{u_i}, \ \ \ c_{12} = \sum _{i \in I_2} \frac{1}{u_i}, c_{22} = \sum _{i \in I_2} \frac{1}{v_i}, \ \ \ c_{21} = \sum _{i \in I_1} \frac{1}{v_i}, $$
$$ d_{11} = \sum _{i \in I_1} \ln (1 - e^{-\frac{\lambda }{u_i}}), d_{12} = \sum _{i \in I_2} \ln (1 - e^{-\frac{\lambda }{u_i}}) $$
$$ d_{22} = \sum _{i \in I_2} \ln (1 - e^{-\frac{\lambda }{v_i}}), d_{21} = \sum _{i \in I_1} \ln (1 - e^{-\frac{\lambda }{v_i}}). $$

If the (i, j)-th element of the matrix \({{\boldsymbol{B}}}\) is B(i, j), then \(B(i,j) = B(j,i)\), for \(1 \le i,j \le 4\), and for \(1 \le i \le j \le 4\),

$$ B(1,1) = \frac{n_1 + n_2 w_2}{\widehat{\alpha }_1^2}, \ \ \ B(2,2) = \frac{n_2 + n_1 w_1}{\widehat{\alpha }_2^2}, \ \ \ B(3,3) = \frac{n_1(1-w_1) + n_2 (1-w_2)}{\widehat{\alpha }_0^2}, $$
$$ B(4,4) = \frac{2}{\widehat{\lambda }^2} + a_{11}[\widehat{\alpha }_1-1] + a_{22}[\widehat{\alpha }_2-1] + a_{12}[\widehat{\alpha }_1+\widehat{\alpha }_0-1]+ a_{21}[\widehat{\alpha }_2+\widehat{\alpha }_0-1] $$
$$ B(1,4) = -\frac{1}{\widehat{\lambda }^2} - (c_{11}+b_{11}), B(2,4) = -\frac{1}{\widehat{\lambda }^2} - (c_{22}+b_{22}), B(3,4) = b_{12} + b_{21}, $$
$$ B(1,3) = B(2,3) = B(1,2) = 0. $$

If \({{\boldsymbol{S}}} = (S(1), S(2), S(3), S(4))^{\top }\), then

$$ S(1) = \frac{n_1 + w_2 n_2}{\widehat{\alpha }_1} + (d_{11} + d_{12}), S(2) = \frac{n_2 + w_1 n_1}{\widehat{\alpha }_2} + (d_{22} + d_{21}), S(3) = d_{12} + d_{21}, $$
$$\begin{aligned} S(4)= & {} \widehat{\lambda } (c_{11} + c_{12} + c_{21} + c_{22}) - \frac{2n}{\widehat{\lambda }} - \widehat{\alpha }_1 (b_{11} + b_{12}) + \widehat{\alpha }_2 (b_{22} + b_{21}) + \widehat{\alpha }_0 (b_{21} + b_{12}) \\&\ \ \ \ \ \ \ + (b_{11} + b_{12} + b_{21} + b_{22}). \end{aligned}$$

Appendix 3: Normalizing Constant c

In this section, we show that the normalizing constant c satisfies (18). We will show the result for \(p = 3\), the general result easily follows from there. If \((Y_1,Y_2,Y_3)^{\top }\) follows a AMIGE with parameters \(\alpha _0\), \(\alpha _1\), \(\alpha _2\), \(\alpha _3\) and \(\lambda \), then for \({{\boldsymbol{Y}}} = (Y_1,Y_2,Y_3)\) and \({{\boldsymbol{y}}} = (y_1,y_2,y_3)\)

$$ f_{{\boldsymbol{Y}}}({{\boldsymbol{y}}}) = c \left\{ \begin{array}{ccc} f_{IGE}(y_1;\alpha _1,\lambda )f_{IGE}(y_2;\alpha _2,\lambda )f_{IGE}(y_3;\alpha _0+\alpha _3,\lambda ) &{} \hbox {if} &{} y_1< y_2< y_3 \\ f_{IGE}(y_1;\alpha _1,\lambda )f_{IGE}(y_3;\alpha _3,\lambda )f_{IGE}(y_2;\alpha _0+\alpha _2,\lambda ) &{} \hbox {if} &{} y_1< y_3< y_2 \\ f_{IGE}(y_2;\alpha _2,\lambda )f_{IGE}(y_1;\alpha _1,\lambda )f_{IGE}(y_3;\alpha _0+\alpha _3,\lambda ) &{} \hbox {if} &{} y_2< y_1< y_3 \\ f_{IGE}(y_2;\alpha _2,\lambda )f_{IGE}(y_3;\alpha _3,\lambda )f_{IGE}(y_1;\alpha _0+\alpha _1,\lambda ) &{} \hbox {if} &{} y_2< y_3< y_1 \\ f_{IGE}(y_3;\alpha _3,\lambda )f_{IGE}(y_1;\alpha _1,\lambda )f_{IGE}(y_2;\alpha _0+\alpha _2,\lambda ) &{} \hbox {if} &{} y_3< y_1< y_2 \\ f_{IGE}(y_3;\alpha _3,\lambda )f_{IGE}(y_2;\alpha _2,\lambda )f_{IGE}(y_1;\alpha _0+\alpha _1,\lambda ) &{} \hbox {if} &{} y_3< y_2 < y_1. \end{array} \right. $$

Now, note that

$$\begin{aligned}&\int _0^{\infty } \int _{y_1}^{\infty } \int _{y_2}^{\infty } f_{IGE}(y_1;\alpha _1,\lambda )f_{IGE}(y_2;\alpha _2,\lambda )f_{IGE}(y_3;\alpha _0+\alpha _3,\lambda ) dy_3 dy_2 dy_1 = \\&\int _0^{\infty } \int _{y_1}^{\infty } f_{IGE}(y_1;\alpha _1,\lambda )f_{IGE}(y_2;\alpha _2,\lambda )S_{IGE}(y_2;\alpha _0+\alpha _3,\lambda ) dy_3 dy_2 = \\&\frac{\alpha _2}{\alpha _2+\alpha _3+\alpha _0} \int _0^{\infty } \int _{y_1}^{\infty } f_{IGE}(y_1;\alpha _1,\lambda )S_{IGE}(y_1;\alpha _2+\alpha _3+\alpha _0,\lambda ) = \\&\frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _2}{\alpha _2+\alpha _3+\alpha _0}. \end{aligned}$$

Similarly, the other integrations also can be obtained. Hence

$$\begin{aligned} c^{-1}= & {} \frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _2}{\alpha _2+\alpha _3+\alpha _0} + \frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _3}{\alpha _2+\alpha _3+\alpha _0} + \\&\frac{\alpha _2}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _1}{\alpha _1+\alpha _3+\alpha _0} + \frac{\alpha _2}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _3}{\alpha _1+\alpha _3+\alpha _0} + \\&\frac{\alpha _3}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _0} + \frac{\alpha _3}{\alpha _1+\alpha _2+\alpha _3+\alpha _0} \times \frac{\alpha _2}{\alpha _1+\alpha _2+\alpha _0}. \end{aligned}$$

Appendix 4: Proof of Theorem 2

Proof

(a) Follows from the definition.

(b) Proof follows along the same way as the proof of Part (a) of Theorem 2.1.

(c)

$$\begin{aligned} P(Z> z)= & {} P(U_1> z, \ldots , U_p> z, U_0 > z) \\= & {} S_{IGE}(z; \alpha _1, \lambda ) \times \ldots \times S_{IGE}(z; \alpha _p, \lambda ) S_{IGE}(z; \alpha _0, \lambda ) \\= & {} S_{IGE}(z; \alpha _1+\ldots +\alpha _p+\alpha _0, \lambda ). \end{aligned}$$

(d) Observe that \((Y_i,Y_j) \sim \) ABIGE\((\alpha _i,\alpha _j,\lambda )\). Hence,

$$\begin{aligned} P(Y_i < Y_j)= & {} \frac{\alpha _i+\alpha _j+\alpha _0}{\alpha _i+\alpha _j} \int _0^{\infty } \int _u^{\infty } f_{IGE}(u; \alpha _i,\lambda ) f_{IGE}(v; \alpha _j+\alpha _0,\lambda ) dv du \\= & {} \frac{\alpha _i+\alpha _j+\alpha _0}{\alpha _i+\alpha _j} \int _0^{\infty } f_{IGE}(u; \alpha _i,\lambda ) S_{IGE}(u; \alpha _j+\alpha _0,\lambda ) du \\= & {} \frac{\alpha _i}{\alpha _i+\alpha _j}. \end{aligned}$$

(e) Observe that \((Y_i,Y_j) \sim \) ABIGE\((\alpha _i,\alpha _j,\lambda )\). Hence,

$$\begin{aligned} P(Y_i > a| Y_i< Y_j)= & {} \frac{P(a< Y_i< Y_j)}{P(Y_i < Y_j)} \\= & {} \frac{\alpha _i+\alpha _j+\alpha _0}{\alpha _i} \int _a^{\infty } \int _u^{\infty } f_{IGE}(u; \alpha _i, \lambda ) f_{IGE}(v, \alpha _j +\alpha _0, \lambda ) dv du \\= & {} \frac{\alpha _i+\alpha _j+\alpha _0}{\alpha _i} \int _a^{\infty } f_{IGE}(u; \alpha _i, \lambda ) S_{IGE}(u, \alpha _j +\alpha _0, \lambda ) du \\= & {} S_{IGE}(a; \alpha _i+\alpha _j+\alpha _0, \lambda ). \end{aligned}$$

    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, D. (2021). An Absolute Continuous Bivariate Inverse Generalized Exponential Distribution: Properties, Inference and Extensions. In: Arnold, B.C., Balakrishnan, N., Coelho, C.A. (eds) Methodology and Applications of Statistics. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-83670-2_7

Download citation

Publish with us

Policies and ethics