Skip to main content

Assessment of River Health through Water and Biological Characteristics

  • Chapter
  • First Online:
River Health and Ecology in South Asia
  • 409 Accesses

Abstract

Water covers 71% of the surface of the earth, out of which the share of rivers and lakes being 0.3% only. Therefore, it is necessary to assess and maintain the health of rivers. Physical, chemical, and biological characteristics are exclusively measured to determine the health of river water. The present study was carried out for 3 years during 2017–2019 to evaluate the ecosystem health of River Mahanadi and its seven tributaries at the nodes by analyzing the physical habitats, chemical characteristics of water, and biological attributes of fishes. River health was calculated from water quality index (WQI), qualitative habitat evaluation index (QHEI), nutrient pollution index (NPI), and biological integrity index (IBI). The major stressors affecting river health have been established through principal component analysis (PCA). Cluster analysis revealed variations in water quality over time, which are typically signs of pollution. We also described a variety of macroinvertebrates to determine their function in determining the quality of river water and pollution levels. The study suggests that most sites of the river have moderate water quality. The water quality of upstream stretches was deteriorated due to anthropogenic activity and intensive agriculture. Nutrient (N and P) enrichment, organic matter contaminants from domestic wastewater disposal, deforestation, and loss of riparian vegetation were identified to be the major stressors. The deterioration of the quality of rivers was also linked to river regulation and channel alteration. The findings of the study could be used as a metric for assessing the ecological health of rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel, P. D. (1996). Water Pollution Biology (2nd ed.). London: Taylor and Francis.

    Google Scholar 

  • Adeleye, I. A., & Adebiyi, A. A. (2003). Physicochemical and microbiological assessment of okooba: A Nigerian Abattoir. Journal of Environmental Biology, 24(3), 309-313.

    Google Scholar 

  • Altermatt, F. (2012). Metacommunity dynamics. In D. Gibson (Ed.), Oxford bibliographies online: ecology. New York: Oxford University Press. Retrieved June 5, 2013, from http://www.Oxfordbiblio-graphies.com/view/document/obo-9780199830060/obo-9780199830060 0021.xml.

  • An, K. G., & Jones, J. R. (2000). Temporal and spatial patterns in ionic salinity and suspended solids in a reservoir influenced by the Asian monsoon. Hydrobiologia, 436, 179-189.

    Google Scholar 

  • An, K. G., Lee, J. Y., Bae, D. Y., Kim, J. H., Hwang, S. J., Won, D. H., Lee, J. K., & Kim, C. S. (2006). Ecological assessments of aquatic environment using multi-metric model in major nationwide stream watersheds. Journal of Korean Society on Water Quality, 22, 796-804.

    Google Scholar 

  • Annan, K. (2005). ‘Water is essential for life’ (General Assembly Report: A/60/158).

    Google Scholar 

  • APHA, (1985). Standard Methods for the Examination of Water and Wastewater, 16, 1268. New York, USA: American Public Health Association.

    Google Scholar 

  • Atique, U., & An, K. G. (2018). Stream Health Evaluation Using a Combined Approach of Multi-Metric Chemical Pollution and Biological Integrity Models. Water, 10, 661.

    Google Scholar 

  • Awomeso, J. A., Ahmad, S. M., & Taiwo, A. M. (2020). Multivariate assessment of groundwater quality in the basement rocks of Osun State, Southwest, Nigeria. Environmental Earth Sciences, 79(5), 108-116.

    Google Scholar 

  • Barakat, A., Baghdadi, M. E., Rais, J., Aghezzaf, B., & Slassi, M. (2016). Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research, 4, 284-292.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Griffity, G. E., Frydenborg, R., McCarron, E., White, J. S., & Bastian, M. L. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15(2), 185-211.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for use in streams and wadeable rivers: Periphyton, Benthic Macroinvertebrates and Fish (2nd ed.), EPA 841-B-99-002, 235. Washington, DC, USA: U.S. Environmental Protection Agency, Office of Water.

    Google Scholar 

  • Chapman, D., & Kimstach, V. (1996). Selection of water quality variables. In D. Chapman (Ed.), Water quality assessments: A guide to the use of biota, sediments and water in environment monitoring (2nd ed., 2188-2187, pp. 59-126). London: E FN Spon.

    Google Scholar 

  • Czerniawska-Kusza, I. (2005). Comparing modified biological monitoring working party score system and several biological indices based on macroinvertebrates for water-quality assessment. Limnologica, 35(3), 169-176.

    Article  Google Scholar 

  • Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen and phosphorus. Water Research, 32, 1455-1462.

    Google Scholar 

  • Duran, M. (2006). Monitoring water quality using benthic macroinvertebrates and physicochemical parameters of Behzat Stream in Turkey. Polish Journal of Environmental Studies, 15(5), 709-717.

    CAS  Google Scholar 

  • Edds, D. R. (1993). Fish assemblage structure and environmental correlations in Nepal’s Gandaki River. Copeia, 1993(1), 48-60.

    Article  Google Scholar 

  • Fernandes, C. C., Podos, J., & Lundberg, J. G. (2004). Amazonian ecology: tributaries enhance the diversity of electric fishes. Science, 305(5692), 1960-1962.

    Article  CAS  Google Scholar 

  • Forina, M., Armanino, C., & Raggio, V. (2002). Clustering with dendrograms on interpretation variables. Analytica Chimica Acta, 454(1), 13-19.

    Article  CAS  Google Scholar 

  • Forsberg, G., & Ryding, S. O. (1980). Eutrophication parameter and trophic state indices in Swedish waste receiving lakes. Achieves of Hydrobiology, 89, 189-207.

    CAS  Google Scholar 

  • Fujimoto, N., & Sudo, R. (1997). Nutrient-limited growth of Microcystis aerugimosa and Phormidium tenue and competition under various N: P supply ratios and temperatures. Limnology and Oceanography, 42(2), 250-256.

    Google Scholar 

  • Galal-Gorchev, H., Ozolins, G., & Bonnefoy, X. (1993). Revision of the WHO guidelines for drinking water quality. Ann Ist Super Sanita, 29(2), 335-345.

    Google Scholar 

  • Ganguly, I., Patnaik, L., & Nayak, S. (2018). Macroinvertebrates and its impact in assessing water quality of riverine system: A case study of Mahanadi River, Cuttack, India. Journal of Applied and Natural Science, 10(3), 958-963.

    Article  CAS  Google Scholar 

  • Gazzaz, N. M., Yusoff, M. K., Ramli, M. F., Aris, A. Z., & Juahir, H. (2012). Characterization of spatial patterns in river water quality using chemometric pattern recognition techniques. Marine Pollution Bulletin, 64(4), 688-698.

    Google Scholar 

  • Gelwick, F. P. (1990). Longitudinal and temporal comparisons of riffle and pool fish assemblages in a Northeastern Oklahoma Ozark Stream. Copeia, 1990(4), 1072-1082.

    Article  Google Scholar 

  • Grant, E. H. C., Lowe, W. H., & Fagan, W. F. (2007). Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 10(2), 165-175.

    Article  Google Scholar 

  • Holyoak, M., Leibold, M. A., & Holt, R. D. (2005). Metacommunities. Spatial dynamics and ecological communities. Chicago: The University of Chicago Press.

    Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of the Water Pollution Control Federation, 37(3), 300-306.

    Google Scholar 

  • Hughes, R. M., & Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27(4), 837-859.

    Article  Google Scholar 

  • Hugueny, B. S., Camara, B., Samoura, B., & Magassouba, M. (1996). Applying an index of biotic integrity based on communities in a West African river. Hydrobiologia, 331, 71-78.

    Article  Google Scholar 

  • Jiang, Y. (2009). China’s water scarcity. Journal of Environmental Management, 90(11), 3185-3196.

    Google Scholar 

  • Jolliffe, I. (2011). Principal component analysis. In M. Lovric (Ed.), International Encyclopedia of Statistical Science (pp. 1094-1096). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Kamdem-Toham, A., & Teugels, G. G. (1999). First data on an index of biotic integrity (IBI) based on fish assemblages for the assessment of the impact of deforestation in a tropical West African system. Hydrobiologia, 397, 29-38.

    Article  Google Scholar 

  • Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21-27.

    Google Scholar 

  • Karr, J. R., & Dionne, M. (1991). Designing surveys to assess biological integrity in lakes and reservoirs. In Biological Criteria Research and Regulation, Proceedings of a Symposium (EP-440/5-91-005), Arlington, VA, USA, December 12-13, 1990. Washington, DC, USA: U.S. EPA, Office of Waters. 62-72.

    Google Scholar 

  • Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity in running waters: A method and its rationale. Illinois Natural History Survey Special Publication, 5, 28.

    Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(20), 301-309.

    Article  CAS  Google Scholar 

  • Kim, J. Y., & An, K. G. (2015). Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water, 7(11), 6378-6403.

    Article  CAS  Google Scholar 

  • Kleynhans, C. J. (1999). The development of a fish index to assess the biological integrity of South African rivers. Water, 25(3), 265-278.

    Google Scholar 

  • Kumarin, M., Tripathin, S., Pathakn, V., & Tripathin, B. D. (2013). Chemometric characterization of river water quality. Environmental Monitoring and Assessment, 185(4), 3081-3089.

    Google Scholar 

  • Lang, C., Eplattenier, G., & Reymond, O. (1989). Water quality in rivers of Western Switzerland: Application of an adaptable index based on benthic invertebrates. Aquatic Sciences, 51, 224-234.

    Article  Google Scholar 

  • Lang, C., & Reymond, O. (1995). An improved index of environmental quality for Swiss rivers based on benthic invertebrates. Aquatic Sciences, 57, 172-180.

    Google Scholar 

  • Lee, H. J., & An, K. G. (2009). The development and application of multi-metric water quality assessment model for reservoir managements in Korea. Korean Journal of Limnology, 42(2), 242-252.

    Google Scholar 

  • Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7), 601-613.

    Article  Google Scholar 

  • Liun, C. W., Linn, K. H., & Kuon, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Science of the Total Environment, 313(1–3), 77-89.

    Google Scholar 

  • Loucks, D. P., van Beek, E., Stedinger, J. R., Dijkman, J. P. M., & Villars, M. T. (2005). Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. Paris: UNESCO.

    Google Scholar 

  • Lyons, J., Navarro-Perez, S., Cochran, P. A., Santana, E., & Guzman-Arroyo, M. (1995). Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central Mexico. Conservation Biology, 9, 569-584.

    Article  Google Scholar 

  • Macneil, C., Dick, J. T. A., Gibbins, C., Elwood, R. W., & Montgomery, I. A. (2002). A reappraisal of the gamma-rus:asellus ratio as an index of organic pollution in rivers. Water Research, 36(1), 75-84.

    Article  CAS  Google Scholar 

  • Mahlknecht, J., Steinich, B., & De León, I. N. (2004). Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environmental Geology, 45(6), 781-795.

    Article  CAS  Google Scholar 

  • Mason, C. F. (2002). Biology of Freshwater Pollution (4th ed.). New York, NY, USA: Prentice.

    Google Scholar 

  • Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical chemical data by the use of cluster analysis. New York: John Wiley Sons.

    Google Scholar 

  • McCune, B., & Mefford, M. J. (1999). PC-ORD: Multivariate Analysis of Ecological Data. Gleneden Beach, OR, USA: MjM Software Design.

    Google Scholar 

  • Munkittrick, K. R., & Dixon, D. G. (1989). A holistic approach to ecosystem health assessment using fish population characteristics. Hydrobiologia, 188, 122-135.

    Google Scholar 

  • Nash, L. (1993). Water quality and health. In P. H. Gleick (Ed.), Water in Crisis: A Guide to the World’s FreshWater Resources (pp. 25-39). New York: Oxford University Press.

    Google Scholar 

  • Nayak, S., Ganguly, I., Raut, D., & Patnaik, L. (2017). Development of water quality index and heavy metal accumulation by macro algae of Mahanadi River, Cuttack, Odisha. Journal of Chemical, Biological and Physical Sciences, 7(3), 651-658.

    CAS  Google Scholar 

  • Nelson, J. S. (2006). Fishes of the World. West Sussex: John Wiley & Sons.

    Google Scholar 

  • Nnorom, I. C., Ewuzie, U., & Eze, S. O. (2019). Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon, 5(1), 1-36.

    Article  Google Scholar 

  • Oberdorff, T., & Hughes, R. M. (1992). Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine Basin, France. Hydrobiologia, 228, 117-130.

    Article  Google Scholar 

  • Patil, V. B., Pinto, S. M., Govindaraju, T., Hebbalu, V. S., Bhat, V., & Kannanur, L. N. (2020). Multivariate statistics and water quality index (WQI) approach for geochemical assessment of groundwater quality—A case study of KanaviHalla Sub-Basin, Belagavi, India. Environmental Geochemistry and Health, 42(9), 2667-2684.

    Article  CAS  Google Scholar 

  • Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrate and fish (EPA/444/4-89-001). US EPA, Washington, DC, USA: Office of Water Regulations and Standards. 1-34.

    Google Scholar 

  • Power, M. E., Stout, R. J., Cushing, C. E., Harper, P. P., Hauer, F. R., Matthews, W. J., Moyle, P. B., Statzner, B., & Badgen, I. R. W. D. (1988). Biotic and abiotic controls in river and stream communities. Journal of the North American Benthological Society, 7(4), 456-479.

    Google Scholar 

  • Prepas, E. E., & Rigler, F. H. (1982). Improvements in quantifying the phosphorus concentration in lake water. Canadian Journal of Fisheries and Aquatic Sciences, 39(6), 822-829.

    Google Scholar 

  • Pyron, M., Lauer, T. E., le Blanc, E., Weitzel, D., & Gammon, J. R. (2008). Temporal and spatial variation in an index of biological integrity for the middle Wabash River, Indiana. Hydrobiologia, 600(1), 205-214.

    Article  Google Scholar 

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2008). Spatio-temporal variations in water quality of NullahAik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140, 43-59.

    Article  CAS  Google Scholar 

  • Rodier, J., Legube, B., & Merlet, N. (2009). L′Analyse de l′EauDunod. Paris.

    Google Scholar 

  • Ruiz, G., Jeison, D., Rubilar, O., Ciudad, G., & Chamy, R. (2006). Nitrification – denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technology, 97(2), 330-335.

    Article  CAS  Google Scholar 

  • Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv fur Hydrobiologie, l62, 1-28.

    Google Scholar 

  • Sanchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., & Borja, R. (2006). Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 7(2), 315-328.

    Article  Google Scholar 

  • Sanders, R. E., Miltner, R. J., & Yoder, C. O. (1999). The use of external deformities, erosion, lesions, tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: a case study of seven Ohio streams. In T. P. Simon (Ed.), Assessing the Sustainability and Biological Integrity of Water Resources using Fish Communities (pp. 225-246). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Schlossser, I. J. (1982). Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs, 52(4), 395-414.

    Article  Google Scholar 

  • Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109-136.

    Google Scholar 

  • Semiromi, F. B., Hassani, A. H., Torabian, A., Karbassi, A. R., & Lotfi, F. H. (2011). Water quality index development using fuzzy logic: a case study of the Karoon river of Iran. African Journal of Biotechnology, 10(50), 10125-10133.

    Article  Google Scholar 

  • Seppala, J., Tamminen, T., & Kaitala, S. (1999). Experimental evaluation of nutrient limitation of phytoplankton communities in the Gulf of Riga. Journal of Marine Systems, 23(1999), 107-126.

    Article  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464-475.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadisb, G., Voutsac, D., Anthemidis, A., & Kouimtzisc, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(2003), 4119-4124.

    Article  CAS  Google Scholar 

  • Singh, K., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study. Water Research, 38(18), 3980-3992.

    Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques - A case study. Analytica Chimica Acta, 538, 355-374.

    Article  CAS  Google Scholar 

  • Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221(4611), 669-671.

    Article  CAS  Google Scholar 

  • Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1999), 179-196.

    Article  CAS  Google Scholar 

  • Soto-Galera, E., Diaz-Pardo, E., López-López, E., & Lyons, J. (1998). Fish indicator of environmental quality in the Rio Lerna Basin, México. Aquatic Ecosystem Health and Management, 1(1998), 267-276.

    Article  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53, 1509-1528.

    Article  CAS  Google Scholar 

  • Thompson, R., & Lake, P. (2010). Reconciling theory and practice: the role of stream ecology. River Research and Applications, 26(1), 5-14.

    Article  Google Scholar 

  • Thorp, J. H., Thoms, M. C., & Delong, M. D. (2006). The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications, 22, 123-147.

    Article  Google Scholar 

  • Tripathi, M., & Singal, S. K. (2019). Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga, India. Ecological Indicators, 96, 430-436.

    Article  CAS  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581-3592.

    Google Scholar 

  • Yoder, C. O., & Rankin, E. T. (1998). The role of biological indicators in a state water quality management process. Environmental Monitoring Assessment, 51, 61-88.

    Google Scholar 

  • Zhao, J., Fu, G., Lei, K., & Li, Y. (2011). Multivariate analysis of surface water quality in the three gorges area of China and implications for water management. Journal of Environmental Sciences, 23(9), 1460-1471.

    Google Scholar 

  • Ziglio, G., Siligardi, M., & Flaim, G. (2006). Biological Monitoring of Rivers. New York: John Wiley & Sons.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rout, J., Sahoo, G. (2022). Assessment of River Health through Water and Biological Characteristics. In: Patra, B.C., Shit, P.K., Bhunia, G.S., Bhattacharya, M. (eds) River Health and Ecology in South Asia. Springer, Cham. https://doi.org/10.1007/978-3-030-83553-8_7

Download citation

Publish with us

Policies and ethics