Skip to main content

A Stronger Lower Bound on Parametric Minimum Spanning Trees

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12808))

Included in the following conference series:

  • 1042 Accesses

Abstract

We prove that, for an undirected graph with n vertices and m edges, each labeled with a linear function of a parameter \(\lambda \), the number of different minimum spanning trees obtained as the parameter varies can be \(\varOmega (m\log n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic minimum spanning trees. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 596–605 (1998). https://doi.org/10.1109/SFCS.1998.743510

  2. Carlson, J., Eppstein, D.: The weighted maximum-mean subtree and other bicriterion subtree problems. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 400–410. Springer, Heidelberg (2006). https://doi.org/10.1007/11785293_37

    Chapter  Google Scholar 

  3. Carstensen, P.J.: Parametric cost shortest path problems. Unpublished Bellcore memo (1984)

    Google Scholar 

  4. Castelli, L., Labbé, M., Violin, A.: Network pricing problem with unit toll. Networks 69(1), 83–93 (2017). https://doi.org/10.1002/net.21701

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakraborty, S., Fischer, E., Lachish, O., Yuster, R.: Two-phase algorithms for the parametric shortest path problem. In: Marion, J.-Y., Schwentick, T. (eds.) Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), Volume 5 of LIPIcs, pp. 167–178. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010). https://doi.org/10.4230/LIPIcs.STACS.2010.2452

  6. Chan, T.M.: Finding the shortest bottleneck edge in a parametric minimum spanning tree. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 917–918. SIAM (2005). https://dl.acm.org/citation.cfm?id=1070432.1070561

  7. Dey, T.K.: Improved bounds for planar \(k\)-sets and related problems. Discrete Comput. Geom. 19(3), 373–382 (1998). https://doi.org/10.1007/PL00009354

    Article  MathSciNet  MATH  Google Scholar 

  8. Eben-Chaime, M.: Parametric solution for linear bicriteria knapsack models. Manag. Sci. 42(11), 1565–1575 (1996). https://doi.org/10.1287/mnsc.42.11.1565

    Article  MATH  Google Scholar 

  9. Eppstein, D.: Geometric lower bounds for parametric matroid optimization. Discrete Comput. Geom. 20(4), 463–476 (1998). https://doi.org/10.1007/PL00009396

    Article  MathSciNet  MATH  Google Scholar 

  10. Eppstein, D.: The parametric closure problem. ACM Trans. Algorithms 14(1), A2:1–A2:22 (2018). https://doi.org/10.1145/3147212

  11. Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In: Charikar, M. (ed.) Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 794–804. SIAM (2010). https://doi.org/10.1137/1.9781611973075.65

  12. Fernández-Baca, D., Slutzki, G.: Linear-time algorithms for parametric minimum spanning tree problems on planar graphs. Theor. Comput. Sci. 181(1), 57–74 (1997). https://doi.org/10.1016/S0304-3975(96)00262-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernández-Baca, D., Slutzki, G., Eppstein, D.: Using sparsification for parametric minimum spanning tree problems. Nordic J. Comput. 3(4), 352–366 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. J. Algorithms 9(3), 411–417 (1988). https://doi.org/10.1016/0196-6774(88)90031-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Giudici, A., Halffmann, P., Ruzika, S., Thielen, C.: Approximation schemes for the parametric knapsack problem. Inf. Process. Lett. 120, 11–15 (2017). https://doi.org/10.1016/j.ipl.2016.12.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Gusfield, D.: Bounds for the parametric minimum spanning tree problem. In: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State University, Arcata, California, 1979), Volume 26 of Congress Number, Winnipeg, Manitoba, pp. 173–181. Utilitas Math (1980)

    Google Scholar 

  17. Holzhauser, M., Krumke, S.O.: An FPTAS for the parametric knapsack problem. Inf. Process. Lett. 126, 43–47 (2017). https://doi.org/10.1016/j.ipl.2017.06.006

    Article  MathSciNet  MATH  Google Scholar 

  18. Katoh, N.: Bicriteria network optimization problems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E75, A:321–A:329 (1992)

    Google Scholar 

  19. Katoh, N., Tokuyama, T.: Notes on computing peaks in \(k\)-levels and parametric spanning trees. In: Souvaine, D.L. (ed.) Proceedings of the 17th Symposium on Computational Geometry (SoCG 2001), pp. 241–248. ACM (2001). https://doi.org/10.1145/378583.378675

  20. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inf. Process. Lett. 9(5), 229–232 (1979). https://doi.org/10.1016/0020-0190(79)90075-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Pollack, M.: The maximum capacity route through a network. Oper. Res. 8, 733–736 (1960). https://doi.org/10.1287/opre.8.5.733

    Article  MathSciNet  Google Scholar 

  22. Tarjan, R.E.: Data Structures and Network Algorithms, Volume 44 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1983). https://doi.org/10.1137/1.9781611970265

  23. Wald, J.A., Colbourn, C.J.: Steiner trees, partial 2-trees, and minimum IFI networks. Networks 13(2), 159–167 (1983). https://doi.org/10.1002/net.3230130202

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eppstein, D. (2021). A Stronger Lower Bound on Parametric Minimum Spanning Trees. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics