Skip to main content

Adversities of Nanoparticles in Elderly Populations

  • Chapter
  • First Online:
Free Radical Biology and Environmental Toxicity

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 442 Accesses

Abstract

In literature, several studies on nanotoxicity have been published which proved that nanoparticle entry inside the cell leads to many biochemical events, ultimately causing free radical generation, mitochondrial damage, cell injury, and cell death. Many in vivo and in vitro studies have proved that the use of nanoparticles in various fields requires prior safety and toxicology evaluation. In this study, the possible toxic effects of nanoparticles on different diseases are explored and various side effects of different types of nanoparticles have been reviewed. After doing a literature study, it has been found that nanoparticles affect elderly and susceptible population more as compared to young and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agmon Y, Khandheria BK, Meissner I, Schwartz GL, Petterson TM, O’Fallon WM, et al. Relation of coronary artery disease and cerebrovascular disease with atherosclerosis of the thoracic aorta in the general population. Am J Cardiol. 2002;89(3):262–7.

    Article  PubMed  Google Scholar 

  • Agrawal DK, Shao Z. Pathogenesis of allergic airway inflammation. Curr Allergy Asthma Rep. 2010;10(1):39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida J, Berry D, Cunningham C, Hamre D, Hofstad M, Mallucci L, et al. Coronaviruses. Nature. 1968;220(650):2.

    Google Scholar 

  • Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;6(5):815–35.

    Article  CAS  PubMed  Google Scholar 

  • Ambalavanan N, Stanishevsky A, Bulger A, Halloran B, Steele C, Vohra Y, et al. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Phys Lung Cell Mol Phys. 2013;304(3):L152–L61.

    CAS  Google Scholar 

  • Arefian Z, Pishbin F, Negahdary M, Ajdary M. Potential toxic effects of Zirconia Oxide nanoparticles on liver and kidney factors. 2015.

    Google Scholar 

  • Azouz RA, Korany RM. Toxic impacts of amorphous silica nanoparticles on liver and kidney of male adult rats: an in vivo study. Biol Trace Elem Res. 2020:1–10.

    Google Scholar 

  • Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol. 2010;5(9):683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballinger SW, Patterson C, Yan C-N, Doan R, Burow DL, Young CG, et al. Hydrogen peroxide–and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res. 2000;86(9):960–6.

    Article  CAS  PubMed  Google Scholar 

  • Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, et al. Mitochondrial integrity and function in atherogenesis. Circulation. 2002;106(5):544–9.

    Article  CAS  PubMed  Google Scholar 

  • Bartneck M, Ritz T, Keul HA, Wambach M, Bornemann J, Gbureck U, et al. Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano. 2012;6(10):8767–77.

    Article  CAS  PubMed  Google Scholar 

  • Bawa R, Audette GF, Rubinstein I. Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. CRC Press; 2016.

    Book  Google Scholar 

  • Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 2009;4(12):876–83.

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71.

    Article  PubMed  Google Scholar 

  • Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Phys Lung Cell Mol Phys. 2008;295(3):L400–L11.

    CAS  Google Scholar 

  • Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect. 2004;112(8):879–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Meng H, Xing G, Yuan H, Zhao F, Liu R, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol. 2008;42(23):8985–92.

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Xue Y, Sun J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomedicine. 2013;8:1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhou D, Han S, Zhou S, Jia G. Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles. Part Fibre Toxicol. 2019;16(1):1–17.

    Article  Google Scholar 

  • Chinde S, Grover P. Toxicological assessment of nano and micron-sized tungsten oxide after 28 days repeated oral administration to Wistar rats. Mutat Res Genet Toxicol Environ Mutagen. 2017;819:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, et al. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci. 2012;126(2):469–77.

    Article  CAS  PubMed  Google Scholar 

  • Choksi K, Boylston W, Rabek J, Widger W, Papaconstantinou J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2004, 1688;(2):95–101.

    Google Scholar 

  • De Groot RJ. Structure, function and evolution of the hemagglutinin-esterase proteins of corona-and toroviruses. Glycoconj J. 2006;23(1-2):59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faedmaleki F, Shirazi FH, Salarian A-A, Ashtiani HA, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res. 2014;13(1):235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fattal E, Grabowski N, Mura S, Vergnaud J, Tsapis N, Hillaireau H. Lung toxicity of biodegradable nanoparticles. J Biomed Nanotechnol. 2014;10(10):2852–64.

    Article  CAS  PubMed  Google Scholar 

  • Feeney AS, Fendrick AM, Quintiliani R. Acute exacerbation of chronic bronchitis: a primary care consensus guideline. Am J Manag Care. 2004;10:689–96.

    PubMed  Google Scholar 

  • Feng L, Ning R, Liu J, Liang S, Xu Q, Liu Y, et al. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. J Hazard Mater. 2020;391:122206.

    Article  CAS  PubMed  Google Scholar 

  • Gaté L, Disdier C, Cosnier F, Gagnaire F, Devoy J, Saba W, et al. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats. Toxicol Lett. 2017;265:61–9.

    Article  PubMed  Google Scholar 

  • Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007;115(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, et al. Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials. 2020;10(9):1645.

    Article  CAS  PubMed Central  Google Scholar 

  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91(3):7–11.

    Article  Google Scholar 

  • Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-bideskan A. The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. Iran J Basic Med Sci. 2019;22(7):745.

    PubMed  PubMed Central  Google Scholar 

  • Husain M, Wu D, Saber AT, Decan N, Jacobsen NR, Williams A, et al. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology. 2015;9(8):1013–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang JH, Kim SJ, Kim Y-H, Noh J-R, Gang G-T, Chung BH, et al. Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology. 2012;294(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I, Leso V, Manno M, Schulte PA. Biomarkers of nanomaterial exposure and effect: current status. J Nanopart Res. 2014;16(3):2302.

    Article  Google Scholar 

  • Inoue K-i, Takano H, Yanagisawa R, Hirano S, Sakurai M, Shimada A, et al. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect. 2006;114(9):1325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K-i, Takano H, Yanagisawa R, Hirano S, Kobayashi T, Fujitani Y, et al. Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice. Toxicology. 2007;238(2-3):99–110.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Takano H, Ohnuki M, Yanagisawa R, Sakurai M, Shimada A, et al. Size effects of nanomaterials on lung inflammation and coagulatory disturbance. Int J Immunopathol Pharmacol. 2008;21(1):197–206.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K-i, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306–16.

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Shelburne CP, Li G, Riebe KJ, Sempowski GD, Foster WM, et al. Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation. J Clin Invest. 2018;121(3):941–55.

    Article  Google Scholar 

  • Kamata H, Tasaka S, Inoue K-i, Miyamoto K, Nakano Y, Shinoda H, et al. Carbon black nanoparticles enhance bleomycin-induced lung inflammatory and fibrotic changes in mice. Exp Biol Med. 2011;236(3):315–24.

    Article  CAS  Google Scholar 

  • Kang GS, Gillespie PA, Gunnison A, Moreira AL, Tchou-Wong K-M, Chen L-C. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ Health Perspect. 2011;119(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  • Karpenko N, Malukin YV, Koreneva E, Klochkov V, Kavok N, Smolenko N et al., editors. The effects of chronic intake of nanoparticles of cerium dioxide or gadolinium ortovanadate into aging male rats. Proceedings of the International Conference Nanomaterials: Applications and Properties; 2013: Sumy State University Publishing.

    Google Scholar 

  • Khatri M, Bello D, Pal AK, Cohen JM, Woskie S, Gassert T, et al. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fibre Toxicol. 2013;10(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–71.

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Kang TC. Comparative measurement of lung deposition of inhaled fine particles in normal subjects and patients with obstructive airway disease. Am J Respir Crit Care Med. 1997;155(3):899–905.

    Article  CAS  PubMed  Google Scholar 

  • Klaus D. Atherosclerosis and arteriosclerosis in hypertension. Nieren Hochdruckkrankh. 2000;29:1–16.

    Google Scholar 

  • Lemoine M. Defining aging. Biol Philos. 2020;35(5):1–30.

    Article  Google Scholar 

  • Lerner CA, Sundar IK, Watson RM, Elder A, Jones R, Done D, et al. Environmental health hazards of e-cigarettes and their components: oxidants and copper in e-cigarette aerosols. Environ Pollut. 2015;198:100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young S-H, et al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect. 2007;115(3):377–82.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Y, Yan B. Nanotoxicity overview: nano-threat to susceptible populations. Int J Mol Sci. 2014;15(3):3671–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  CAS  PubMed  Google Scholar 

  • Lin C-I, Tsai C-H, Sun Y-L, Hsieh W-Y, Lin Y-C, Chen C-Y, et al. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J Biol Sci. 2018;14(3):253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. 2008.

    Google Scholar 

  • Lozano O, Silva-Platas C, Chapoy-Villanueva H, Pérez BE, Lees JG, Ramachandra CJ, et al. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part Fibre Toxicol. 2020;17:1–16.

    Article  Google Scholar 

  • Manno M, Sito F, Licciardi L. Ethics in biomonitoring for occupational health. Toxicol Lett. 2014;231(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  • Marano F, Guadagnini R. Cellular Mechanisms of nanoparticle’s toxicity. Encyclopedia of nanotechnology. 2012.

    Google Scholar 

  • Masoli M, Fabian D, Holt S, Beasley R, Program GIFA. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78.

    Article  PubMed  Google Scholar 

  • Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathers C. The global burden of disease: 2004 update. World Health Organization; 2008.

    Book  Google Scholar 

  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein E–deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 2004;24(6):1006–14.

    Article  CAS  PubMed  Google Scholar 

  • Minarchick VC, Stapleton PA, Porter DW, Wolfarth MG, Çiftyürek E, Barger M, et al. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol. 2013;13(4):323–37.

    Article  CAS  PubMed  Google Scholar 

  • Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med. 2010;181(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  • Nikolovski D, Jeremic M, Paunovic J, Vucevic D, Radosavljevic T, Radojević-Å kodrić S, et al. Application of iron oxide nanoparticles in contemporary experimental physiology and cell biology research. Rev Adv Mater Sci. 2018;53(1):74–8.

    Article  CAS  Google Scholar 

  • Nikula KJ, Green FH. Animal models of chronic bronchitis and their relevance to studies of particle-induced disease. Inhal Toxicol. 2000;12(sup 4):123–53.

    Article  CAS  PubMed  Google Scholar 

  • Niu Y-M, Zhu X-L, Chang B, Tong Z-H, Cao W, Qiao P-H, et al. Nanosilica and polyacrylate/nanosilica: a comparative study of acute toxicity. Bio Med Res Int. 2016;2016

    Google Scholar 

  • Nogueira JB. Air pollution and cardiovascular disease. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia= Portuguese journal of cardiology: an official journal of the Portuguese Society of Cardiology. 2009; 28(6):715.

    Google Scholar 

  • Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, et al. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol. 2008;5(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada T, Lee BW, Ogami A, Oyabu T, Myojo T. Inhalation of titanium dioxide (P25) nanoparticles to rats and changes in surfactant protein (SP-D) levels in bronchoalveolar lavage fluid and serum. Nanotoxicology. 2019;13(10):1396–408.

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Xu Q, Xu X, Yin H, Xu R, Guo S, et al. Hexarelin suppresses high lipid diet and vitamin D3-induced atherosclerosis in the rat. Peptides. 2010;31(4):630–8.

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med. 1997;155(4):1376–83.

    Article  CAS  PubMed  Google Scholar 

  • Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, et al. Drug targets for corona virus: a systematic review. Indian J Pharm. 2020;52(1):56.

    Article  Google Scholar 

  • Qing H, Wang X, Zhang N, Zheng K, Du K, Zheng M, et al. The effect of fine particulate matter on the inflammatory responses in human upper airway mucosa. Am J Respir Crit Care Med. 2019;200(10):1315–8.

    Article  CAS  PubMed  Google Scholar 

  • Raj S, Jose S, Sumod U, Sabitha M. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioall Sci. 2012;4(3):186.

    Article  Google Scholar 

  • Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci. 2007;96(1):2–15.

    Article  CAS  PubMed  Google Scholar 

  • Santhanam P, Wagner JG, Elder A, Gelein R, Carter J, Driscoll K, et al. Effects of subchronic inhalation exposure to carbon black nanoparticles in the nasal airways of laboratory rats. Int J Nanotechnol. 2008;5(1):30–54.

    Article  CAS  Google Scholar 

  • Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59(6):427–43.

    Article  PubMed  Google Scholar 

  • Schulte PA, Trout DB. Nanomaterials and worker health: medical surveillance, exposure registries, and epidemiologic research. J Occup Environ Med. 2011;53:S3–7.

    Article  PubMed  Google Scholar 

  • Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020:1–25.

    Google Scholar 

  • Sha B, Gao W, Wang S, Li W, Liang X, Xu F, et al. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress. Food Chem Toxicol. 2013;58:280–8.

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Wang X, Sang X, Ze Y, Zhao X, Liu D, et al. Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide. J Biomed Mater Res A. 2013;101(11):3238–46.

    PubMed  Google Scholar 

  • Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020:1–6.

    Google Scholar 

  • Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, et al. Zinc and respiratory tract infections: Perspectives for COVID-19. Int J Mol Med. 2020;46(1):17–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Han L, Ge F, Zhang SL, Zhang Y, Zhao BX, et al. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo. J Hazard Mater. 2012;235:316–25.

    Article  PubMed  Google Scholar 

  • Sun Q, Hong X, Wold LE. Cardiovascular effects of ambient particulate air pollution exposure. Circulation. 2010;121(25):2755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, et al. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008;20(6):567–74.

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Yanagisawa R, Ichinose T, Sadakane K, Yoshino S, Yoshikawa T, et al. Diesel exhaust particles enhance lung injury related to bacterial endotoxin through expression of proinflammatory cytokines, chemokines, and intercellular adhesion molecule-1. Am J Respir Crit Care Med. 2002;165(9):1329–35.

    Article  PubMed  Google Scholar 

  • Taute B, Feller S, Hansgen K, Podhaisky H. Carotid atherosclerosis in patients with peripheral arterial disease. Perfusion. 2002;15(5):183–+.

    Google Scholar 

  • Trout DB, Schulte PA. Medical surveillance, exposure registries, and epidemiologic research for workers exposed to nanomaterials. Toxicology. 2010;269(2-3):128–35.

    Article  CAS  PubMed  Google Scholar 

  • Von Klot S, Wölke G, Tuch T, Heinrich J, Dockery D, Schwartz J, et al. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J. 2002;20(3):691–702.

    Article  Google Scholar 

  • Wang Y, Cui H, Zhou J, Li F, Wang J, Chen M, et al. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res. 2015;22(7):5519–30.

    Article  CAS  Google Scholar 

  • Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013;34:243–53.

    Article  CAS  PubMed  Google Scholar 

  • Xu YY, Yang J, Shen T, Zhou F, Xia Y, Fu JY, et al. Intravenous administration of multi-walled carbon nanotubes affects the formation of atherosclerosis in sprague-dawley rats. J Occup Health. 2012;54(5):361–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):1–5.

    Article  Google Scholar 

  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Long M. The biological detoxification of deoxynivalenol: a review. Food Chem Toxicol. 2020;145:111649.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A. 2016;104(11):2881–97.

    Article  CAS  PubMed  Google Scholar 

  • Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS One. 2014;9(3):e92230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Lung PS, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep. 2017;7(1):1–8.

    Google Scholar 

  • Zhu M-T, Wang B, Wang Y, Yuan L, Wang H-J, Wang M, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol Lett. 2011;203(2):162–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the fraternity of University Institute of Biotechnology and also the University Center for Research and Development (UCRD) at Chandigarh University (CU) for support. All the authors have equally contributed to the manuscript and revised the manuscript. The institute to which the authors are currently affiliated, however, has no role in shaping the manuscript. All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, A., Mudgal, G., Khan, Z.A. (2021). Adversities of Nanoparticles in Elderly Populations. In: Kesari, K.K., Jha, N.K. (eds) Free Radical Biology and Environmental Toxicity. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-83446-3_5

Download citation

Publish with us

Policies and ethics