Skip to main content

Quality Assurance and Quality Improvement Enabled by Whole Slide Imaging

  • Chapter
  • First Online:
Whole Slide Imaging

Abstract

Whole slide imaging (WSI) underpins a technological revolution which is transforming the practice of pathology. The microscope has been the primary method of histopathologic interpretation for hundreds of years, is the primary modality with which essentially all pathologists have received their training, and still is the primary diagnostic methodology for the vast majority of surgical pathology cases. However, WSI has matured technologically and can now be used for primary diagnosis in surgical pathology in many countries [1–4]. Since this modality is accepted for use in clinical practice and is being integrated into clinical workflows, robust quality assurance (QA) and quality improvement (QI) programs are necessary to ensure excellent clinical care. The defining feature of WSI is that digitization of glass slides obviates interpreting physical glass slides for pathologic evaluation. The “virtual” nature of a WSI workflow alleviates physical constraints and creates unique QA opportunities such as enabling the remote viewing of slides, enabling slide sorting functionalities, and creating disruptive approaches to objective analysis and computational approaches to quality efforts. The QA opportunities afforded by these unique characteristics of WSI are detailed below in the context of the three phases of testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans AJ, et al. US food and drug administration approval of whole slide imaging for primary diagnosis: a key milestone is reached and new questions are raised. Arch Pathol Lab Med. 2018;142(11):1383–7.

    Article  PubMed  Google Scholar 

  2. Stathonikos N, et al. Going fully digital: perspective of a Dutch academic pathology lab. J Pathol Inform. 2013;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thorstenson S, Molin J, Lundstrom C. Implementation of large-scale routine diagnostics using whole slide imaging in Sweden: digital pathology experiences 2006-2013. J Pathol Inform. 2014;5(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cheng CL, et al. Enabling digital pathology in the diagnostic setting: navigating through the implementation journey in an academic medical centre. J Clin Pathol. 2016;69(9):784–92.

    Article  PubMed  Google Scholar 

  5. Valenstein PN, Sirota RL. Identification errors in pathology and laboratory medicine. Clin Lab Med. 2004;24(4):979–96, vii

    Article  PubMed  Google Scholar 

  6. Heher YK, et al. Achieving high reliability in histology: an improvement series to reduce errors. Am J Clin Pathol. 2016;146(5):554–60.

    Article  PubMed  Google Scholar 

  7. Cloetingh D, Schmidt RA, Kong CS. Comparison of three methods for measuring workload in surgical pathology and cytopathology. Am J Clin Pathol. 2017;148(1):16–22.

    Article  PubMed  Google Scholar 

  8. Ducatman BS, Parslow T. Benchmarking academic anatomic pathologists: the Association of Pathology Chairs Survey. Acad Pathol. 2016;3:2374289516666832.

    PubMed  PubMed Central  Google Scholar 

  9. Fraggetta F, et al. Routine digital pathology workflow: the Catania experience. J Pathol Inform. 2017;8:51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baidoshvili A, et al. Evaluating the benefits of digital pathology implementation: time savings in laboratory logistics. Histopathology. 2018;73(5):784–94.

    Article  PubMed  Google Scholar 

  11. Hanna MG, et al. Implementation of digital pathology offers clinical and operational increase in efficiency and cost savings. Arch Pathol Lab Med. 2019;143(12):1545–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gray A, et al. Quantification of histochemical stains using whole slide imaging: development of a method and demonstration of its usefulness in laboratory quality control. J Clin Pathol. 2015;68(3):192–9.

    Article  PubMed  Google Scholar 

  13. Bautista PA, Hashimoto N, Yagi Y. Color standardization in whole slide imaging using a color calibration slide. J Pathol Inform. 2014;5(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clarke EL, Treanor D. Colour in digital pathology: a review. Histopathology. 2017;70(2):153–63.

    Article  PubMed  Google Scholar 

  15. Krupinski EA, et al. Observer performance using virtual pathology slides: impact of LCD color reproduction accuracy. J Digit Imaging. 2012;25(6):738–43.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hirschorn DS, Krupinski EA, Flynn MJ. PACS displays: how to select the right display technology. J Am Coll Radiol. 2014;11(12 Pt B):1270–6.

    Article  PubMed  Google Scholar 

  17. Peck D, Flynn M. TU-E-217A-01: informatics 1: DICOM and the QMP, assessment of color displays. Med Phys. 2012;39(6Part24):3916.

    Article  CAS  PubMed  Google Scholar 

  18. Van Eycke YR, et al. Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining. Sci Rep. 2017;7:42964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Khan AM, et al. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng. 2014;61(6):1729–38.

    Article  PubMed  Google Scholar 

  20. Xu J, et al. Sparse non-negative matrix factorization (SNMF) based color unmixing for breast histopathological image analysis. Comput Med Imaging Graph. 2015;46(Pt 1):20–9.

    Article  CAS  PubMed  Google Scholar 

  21. Van Eycke YR, et al. Segmentation of glandular epithelium in colorectal tumours to automatically compartmentalise IHC biomarker quantification: a deep learning approach. Med Image Anal. 2018;49:35–45.

    Article  PubMed  Google Scholar 

  22. Yagi Y, Gilbertson JR. Digital imaging in pathology: the case for standardization. J Telemed Telecare. 2005;11(3):109–16.

    Article  PubMed  Google Scholar 

  23. Kayser K, et al. Image standards in tissue-based diagnosis (diagnostic surgical pathology). Diagn Pathol. 2008;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Montalto MC, McKay RR, Filkins RJ. Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method. J Pathol Inform. 2011;2:44.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shrestha P, et al. A quantitative approach to evaluate image quality of whole slide imaging scanners. J Pathol Inform. 2016;7:56.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto N, et al. Referenceless image quality evaluation for whole slide imaging. J Pathol Inform. 2012;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Campanella G, et al. Towards machine learned quality control: a benchmark for sharpness quantification in digital pathology. Comput Med Imaging Graph. 2018;65:142–51.

    Article  PubMed  Google Scholar 

  28. MS Hossain., et al., Practical image quality evaluation for whole slide imaging scanner. Proceedings Biomedical Imaging and Sensing Conference. 2018. Vol. 10711.

    Google Scholar 

  29. Moles Lopez X, et al. An automated blur detection method for histological whole slide imaging. PLoS One. 2013;8(12):e82710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Graham AR, et al. Virtual slide telepathology for an academic teaching hospital surgical pathology quality assurance program. Hum Pathol. 2009;40(8):1129–36.

    Article  PubMed  Google Scholar 

  31. Lopez AM, et al. Virtual slide telepathology enables an innovative telehealth rapid breast care clinic. Hum Pathol. 2009;40(8):1082–91.

    Article  PubMed  Google Scholar 

  32. Clunie D, et al. Digital imaging and communications in medicine whole slide imaging connectathon at digital pathology association pathology visions 2017. J Pathol Inform. 2018;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilbur DC, et al. Whole-slide imaging digital pathology as a platform for teleconsultation: a pilot study using paired subspecialist correlations. Arch Pathol Lab Med. 2009;133(12):1949–53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jones NC, et al. Interinstitutional whole slide imaging teleconsultation service development: assessment using internal training and clinical consultation cases. Arch Pathol Lab Med. 2015;139(5):627–35.

    Article  PubMed  Google Scholar 

  35. Baidoshvili, A., et al. Validation of a whole-slide image-based teleconsultation network. Histopathology, 2018.

    Google Scholar 

  36. Zhao C, et al. International telepathology consultation: three years of experience between the University of Pittsburgh Medical Center and KingMed Diagnostics in China. J Pathol Inform. 2015;6:63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen J, et al. A nationwide telepathology consultation and quality control program in China: implementation and result analysis. Diagn Pathol. 2014;9(Suppl 1):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nahal A, et al. Setting up an ePathology Service at Cleveland Clinic Abu Dhabi: Joint Collaboration With Cleveland Clinic, United States. Arch Pathol Lab Med. 2018;142(10):1216–22.

    Article  PubMed  Google Scholar 

  39. Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. J Pathol Inform. 2017;8:23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leung, S. and T. Allen, Legal/Regulatory. 2016. in Digital pathology, K.J. Kaplan, L.K.F. Rao (eds.): p. 79–86.

    Google Scholar 

  41. Cornish TC, McClintock DS. Medicolegal and regulatory aspects of whole slide imaging-based telepathology. Diagn Histopathol. 2014;21(12):475–81.

    Article  Google Scholar 

  42. Hiemenz MC, Leung ST, Park JY. Crossing boundaries: a comprehensive survey of medical licensing laws and guidelines regulating the interstate practice of pathology. Am J Surg Pathol. 2014;38(3):e1–5.

    Article  PubMed  Google Scholar 

  43. Li KC, et al. Digitization of medicine: how radiology can take advantage of the digital revolution. Acad Radiol. 2013;20(12):1479–94.

    Article  CAS  PubMed  Google Scholar 

  44. Renshaw AA, Lezon KM, Wilbur DC. The human false-negative rate of rescreening pap tests. Measured in a two-arm prospective clinical trial. Cancer. 2001;93(2):106–10.

    Article  CAS  PubMed  Google Scholar 

  45. Ho J, et al. Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies. Hum Pathol. 2006;37(3):322–31.

    Article  PubMed  Google Scholar 

  46. Crothers BA. Cytologic-histologic correlation: where are we now, and where are we going? Cancer Cytopathol. 2018;126(5):301–8.

    Article  PubMed  Google Scholar 

  47. Sirintrapun SJ, et al. Successful secure high-definition streaming telecytology for remote cytologic evaluation. J Pathol Inform. 2017;8:33.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sirintrapun SJ, et al. Robotic telecytology for remote cytologic evaluation without an on-site cytotechnologist or cytopathologist: an active quality assessment and experience of over 400 cases. J Pathol Inform. 2017;8:35.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Van Es SL, et al. Constant quest for quality: digital cytopathology. J Pathol Inform. 2018;9:13.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Janowczyk A, Basavanhally A, Madabhushi A. Stain normalization using sparse AutoEncoders (StaNoSA): application to digital pathology. Comput Med Imaging Graph. 2017;57:50–61.

    Article  PubMed  Google Scholar 

  51. Kather JN, et al. New colors for histology: optimized bivariate color maps increase perceptual contrast in histological images. PLoS One. 2015;10(12):e0145572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shin D, et al. PathEdEx - uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data. J Pathol Inform. 2017;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brunye TT, et al. Eye movements as an index of pathologist visual expertise: a pilot study. PLoS One. 2014;9(8):e103447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Brunye TT, et al. Accuracy is in the eyes of the pathologist: the visual interpretive process and diagnostic accuracy with digital whole slide images. J Biomed Inform. 2017;66:171–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schaumberg AJ, et al. DeepScope: nonintrusive whole slide saliency annotation and prediction from pathologists at the microscope. Comput Intell Methods Bioinform Biostat (2016). 2017;10477:42–58.

    CAS  Google Scholar 

  56. Mercan E, et al. Localization of diagnostically relevant regions of interest in whole slide images: a comparative study. J Digit Imaging. 2016;29(4):496–506.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zheng Y, et al. Histopathological whole slide image analysis using context-based CBIR. IEEE Trans Med Imaging. 2018;37(7):1641–52.

    Article  PubMed  Google Scholar 

  58. L., P., Turning research repository images into gold: winning strategies for funding WSI research infrastructure & programs. Pathology Informatics Summit 2018. 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raess, P.W., Sirintrapun, S.J. (2022). Quality Assurance and Quality Improvement Enabled by Whole Slide Imaging. In: Parwani, A.V. (eds) Whole Slide Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-83332-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83332-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83331-2

  • Online ISBN: 978-3-030-83332-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics