Skip to main content

Highly Palatable Foods Are Addictive

  • Chapter
  • First Online:
Food Addiction, Obesity, and Disorders of Overeating

Abstract

Despite the extensive biological evidence supporting the construct of food addiction (FA), it is still controversial whether certain foods should be considered “addictive.” Some argue that although animals become addicted to sugar, it does not occur in humans (Onaolapo and Onaolapo. Pathophysiology. 25:263–76, 2018; Westwater et al. Eur J Nutr. 55:55–69, 2016; Hebebrand et al. Neurosci Biobehav Rev. 47:295–306, 2014). Others claim that food should not be considered addictive since illicit drugs and other substances of abuse contain a much more clearly addictive agent (e.g., ethanol in alcoholic beverages, nicotine in tobacco, tetrahydrocannabinol in marijuana), whereas such a specific, addictive substance has not been identified in food (Hebebrand et al. Neurosci Biobehav Rev. 47:295–306, 2014; Ruddock et al. Int J Obes. 41:1710–7, 2017; Meule. Curr Obes Rep. 8:11–7, 2019). Indeed, no particular diet in studies of weight loss has proven to definitively outshine any of the others, and no specific macronutrient can be considered all-bad or all-good (Chap. 2) (Onaolapo and Onaolapo. Pathophysiology. 25:263–76, 2018). Concern is expressed that given the current challenges faced by the idea of classifying foods in terms of their addictive potential, the idea of “food addiction” should be dropped (Meule. Curr Obes Rep. 8:11–7, 2019; Carter et al. Annu Rev Nutr. 36:105–28, 2016).

However, as we’ve discussed in preceding chapters, it is clear that certain foods or food combinations, especially when consumed in excess, stimulate the brain reward system in ways that are similar to drugs of addiction (Gearhardt et al. Appetite. 52:430–6, 2009; Jeynes and Gibson. Drug Alcohol Depend. 179:229–39, 2017; Wiss and Brewerton. Nutrients. 12:2937, 2020; Small and DiFeliceantonio. Science. 363:346–7, 2019; Tobore. Behav Brain Res. 384:112560, 2020) and can cause conditioning (Onaolapo and Onaolapo. Pathophysiology. 25:263–76, 2018) and other brain changes that can lead to impulse control difficulties and disordered eating behavior (Wiss and Brewerton. Nutrients. 12:2937, 2020; Small and DiFeliceantonio. Science. 363:346–7, 2019; Tobore. Behav Brain Res. 384:112560, 2020). In addition, certain foods, more than others, adversely affect related systems such as homeostatic and stress-processing pathways and cause neuroinflammation and gut-irritation, perpetuating the addiction cycle (Wiss and Brewerton. Nutrients. 12:2937, 2020; Small and DiFeliceantonio. Science. 363:346–7, 2019; Tobore. Behav Brain Res. 384:112560, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarkar S, Kochhar KP, Khan NA. Fat addiction: psychological and physiological trajectory. Nutrients. 2019;11:2785. https://doi.org/10.3390/nu11112785.

    Article  CAS  PubMed Central  Google Scholar 

  2. Pursey KM, Collins CE, Stanwell P, Burrows TL. Foods and dietary profiles associated with “food addiction” in young adults. Addict Behav Rep. 2015;2:41–8.

    PubMed  PubMed Central  Google Scholar 

  3. Ifland JR, Preuss HG, Marcus MT, Rourke KM, Taylor WC, Burau K, et al. Refined food addiction: a classic substance use disorder. Med Hypotheses. 2009;72:518–26.

    CAS  PubMed  Google Scholar 

  4. Gordon EL, Ariel-Donges AH, Bauman V, Merlo LJ. What is the evidence for “food addiction?” a systematic review. Nutrients. 2018;10(4):477. https://doi.org/10.3390/nu10040477.

    Article  CAS  PubMed Central  Google Scholar 

  5. Gearhardt AN, Davis C, Kuschner R, Brownell KD. The addiction potential of hyperpalatable foods. Curr Drug Abuse Rev. 2011;4:140–5.

    PubMed  Google Scholar 

  6. Pretlow RA. Addiction to highly pleasurable food as a cause of the childhood obesity epidemic: a qualitative Internet study. Eat Disord. 2011;19:295–307.

    PubMed  PubMed Central  Google Scholar 

  7. Gearhardt AN, Corbin WR, Brownell KD. Development of the Yale Food Addiction Scale Version 2.0. Psychol Addict Behav. 2016;30:113–21.

    Google Scholar 

  8. Adams RC, Sedgmond J, Maizey L, Chambers CD, Lawrence NS. Food addiction: implications for the diagnosis and treatment of overeating. Nutrients. 2019;11:2086. https://doi.org/10.3390/nu11092086.

    Article  PubMed Central  Google Scholar 

  9. Wiss D, Brewerton T. Separating the signal from the noise: how psychiatric diagnoses can help discern food addiction from dietary restraint. Nutrients. 2020;12:2937. https://doi.org/10.3390/nu12102937.

    Article  PubMed Central  Google Scholar 

  10. Small DM, DiFeliceantonio AG. Processed foods and food reward. Science. 2019;363:346–7.

    CAS  PubMed  Google Scholar 

  11. Tobore TO. Towards a comprehensive theory of obesity and a healthy diet: the causal role of oxidative stress in food addiction and obesity. Behav Brain Res. 2020;384:112560.

    CAS  PubMed  Google Scholar 

  12. Onaolapo AY, Onaolapo OJ. Food additives, food and the concept of “food addiction”: is stimulation of the brain reward circuit by food sufficient to trigger addiction? Pathophysiology. 2018;25:263–76.

    CAS  PubMed  Google Scholar 

  13. Berthoud H-R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011;21:888–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15:137–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Jerlhag E, et al. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. 2011;12:141–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS One. 2015;10:e0117959.

    PubMed  PubMed Central  Google Scholar 

  17. Schulte EM, Wadden TA, Allison KC. An evaluation of food addiction as a distinct psychiatric disorder. Int J Eat Disord. 2020;53:1610–22.

    PubMed  Google Scholar 

  18. ASAM Definition of Addiction [Internet]. American Society of Addiction Medicine. 2019 [cited 2021 May 2]. Available from: https://www.asam.org/Quality-Science/definition-of-addiction

  19. Markus CR, Rogers PJ, Brouns F, Schepers R. Eating dependence and weight gain; no human evidence for a “sugar-addiction” model of overweight. Appetite. 2017;114:64–72.

    PubMed  Google Scholar 

  20. Luhovyy BL, Akhavan T, Anderson GH. Whey proteins in the regulation of food intake and satiety. J Am Coll Nutr. 2007;26:704S–12S.

    CAS  PubMed  Google Scholar 

  21. Sivertsen HK, Ueland O, Westad F. Development of satiating and palatable high-protein meat products by using experimental design in food technology. Food Nutr Res. 2010;54 https://doi.org/10.3402/fnr.v54i0.5114.

  22. Larsen TM, Dalskov S-M, van Baak M, Jebb SA, Papadaki A, Pfeiffer AFH, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363:2102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Adam CL, Gratz SW, Peinado DI, Thomson LM, Garden KE, Williams PA, et al. Effects of dietary fibre (pectin) and/or increased protein (casein or pea) on satiety, body weight, adiposity and caecal fermentation in high fat diet-induced obese rats. PLoS One. 2016;11:e0155871.

    PubMed  PubMed Central  Google Scholar 

  24. San-Cristobal R, Navas-Carretero S, Martínez-González MÁ, Ordovas JM, Martínez JA. Contribution of macronutrients to obesity: implications for precision nutrition. Nat Rev Endocrinol. 2020;16:305–20.

    PubMed  Google Scholar 

  25. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32:20–39.

    CAS  PubMed  Google Scholar 

  26. Avena NM, Gold JA, Kroll C, Gold MS. Further developments in the neurobiology of food and addiction: update on the state of the science. Nutrition. 2012;28:341–3.

    PubMed  PubMed Central  Google Scholar 

  27. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Common neural mechanisms of palatable food intake and drug abuse: knowledge obtained with animal models. Curr Pharm Des. 2020;26:2372–84.

    PubMed  Google Scholar 

  29. Sinha R. Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol. 2018;131:5–13.

    PubMed  Google Scholar 

  30. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chao A, Grilo CM, White MA, Sinha R. Food cravings, food intake, and weight status in a community-based sample. Eat Behav. 2014;15:478–82.

    PubMed  PubMed Central  Google Scholar 

  32. Malika NM, Hayman LW Jr, Miller AL, Lee HJ, Lumeng JC. Low-income women’s conceptualizations of food craving and food addiction. Eat Behav. 2015;18:25–9.

    PubMed  PubMed Central  Google Scholar 

  33. Paterson C, Lacroix E, von Ranson KM. Conceptualizing addictive-like eating: a qualitative analysis. Appetite. 2019;141:104326.

    PubMed  Google Scholar 

  34. Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31:2281–3.

    PubMed  PubMed Central  Google Scholar 

  35. Fuhrman J. Smart Nutrition, Superior Health [Internet]. [cited 2021 May 9]. Available from: https://www.drfuhrman.com/

  36. Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, Lin C, et al. Genetics of sweet taste preferences. Flavour Fragr J. 2011;26:286–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson J, Vickers Z. Factors influencing sensory-specific satiety. Appetite. 1992;19:15–31.

    CAS  PubMed  Google Scholar 

  38. DiFeliceantonio AG, Small DM. Dopamine and diet-induced obesity. Nat Neurosci. 2019;22(1):1–2.

    CAS  PubMed  Google Scholar 

  39. Yamamoto T, Ueji K. Brain mechanisms of flavor learning. Front Syst Neurosci. 2011;5:76.

    PubMed  PubMed Central  Google Scholar 

  40. Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol. 2012;302:R1119–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Myers KP, Sclafani A. Conditioned enhancement of flavor evaluation reinforced by intragastric glucose. II. Taste reactivity analysis. Physiol Behav. 2001;74:495–505.

    CAS  PubMed  Google Scholar 

  42. Morin J-P, Rodríguez-Durán LF, Guzmán-Ramos K, Perez-Cruz C, Ferreira G, Diaz-Cintra S, et al. Palatable hyper-caloric foods impact on neuronal plasticity. Front Behav Neurosci. 2017;11:19.

    PubMed  PubMed Central  Google Scholar 

  43. Criscitelli K, Avena NM. The neurobiological and behavioral overlaps of nicotine and food addiction. Prev Med. 2016;92:82–9.

    PubMed  Google Scholar 

  44. Lustig RH, Schmidt LA, Brindis CD. Public health: the toxic truth about sugar. Nature. 2012;482:27–9.

    CAS  PubMed  Google Scholar 

  45. Sethi Dalai S, Sinha A, Gearhardt AN. Low carbohydrate ketogenic therapy as a metabolic treatment for binge eating and ultraprocessed food addiction. Curr Opin Endocrinol Diabetes Obes. 2020;27:275–82.

    PubMed  Google Scholar 

  46. Sievenpiper JL. Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity. Nutr Rev. 2020;78:69–77.

    PubMed  PubMed Central  Google Scholar 

  47. Wang W, Li J, Chen X, Yu M, Pan Q, Guo L. Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2020;20:82.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liang N-C, Hajnal A, Norgren R. Sham feeding corn oil increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1236–9.

    CAS  PubMed  Google Scholar 

  49. Adachi S-I, Endo Y, Mizushige T, Tsuzuki S, Matsumura S, Inoue K, et al. Increased levels of extracellular dopamine in the nucleus accumbens and amygdala of rats by ingesting a low concentration of a long-chain Fatty Acid. Biosci Biotechnol Biochem. 2013;77:2175–80.

    CAS  PubMed  Google Scholar 

  50. Dela Cruz JAD, Coke T, Bodnar RJ. Simultaneous detection of c-Fos activation from mesolimbic and mesocortical dopamine reward sites following naive sugar and fat ingestion in rats. J Vis Exp. 2016;2016:53897. https://doi.org/10.3791/53897.

    Article  CAS  Google Scholar 

  51. Casperson SL, Lanza L, Albajri E, Nasser JA. Increasing chocolate’s sugar content enhances its psychoactive effects and intake. Nutrients. 2019;11:596. https://doi.org/10.3390/nu11030596.

    Article  CAS  PubMed Central  Google Scholar 

  52. Carter A, Hardman CA, Burrows T. Food addiction and eating addiction: scientific advances and their clinical, social and policy implications. Nutrients. 2020;12:1485. https://doi.org/10.3390/nu12051485.

    Article  PubMed Central  Google Scholar 

  53. Blanco-Gandía MC, Cantacorps L, Aracil-Fernández A, Montagud-Romero S, Aguilar MA, Manzanares J, et al. Effects of bingeing on fat during adolescence on the reinforcing effects of cocaine in adult male mice. Neuropharmacology. 2017;113:31–44.

    PubMed  Google Scholar 

  54. Blanco-Gandía MC, Ledesma JC, Aracil-Fernández A, Navarrete F, Montagud-Romero S, Aguilar MA, et al. The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology. 2017;121:219–30.

    PubMed  Google Scholar 

  55. Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. Appetite. 2009;52:430–6.

    PubMed  Google Scholar 

  56. Avena NM, Rada P, Hoebel BG. Sugar and fat bingeing have notable differences in addictive-like behavior. J Nutr. 2009;139:623–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schulte EM, Smeal JK, Lewis J, Gearhardt AN. Development of the highly processed food withdrawal scale. Appetite. 2018;131:148–54.

    PubMed  Google Scholar 

  58. Parnarouskis L, Schulte EM, Lumeng JC, Gearhardt AN. Development of the highly processed food withdrawal scale for children. Appetite. 2020;147:104553.

    PubMed  Google Scholar 

  59. Jeynes KD, Gibson EL. The importance of nutrition in aiding recovery from substance use disorders: a review. Drug Alcohol Depend. 2017;179:229–39.

    PubMed  Google Scholar 

  60. Gearhardt AN, Corbin WR, Brownell KD. Food addiction: an examination of the diagnostic criteria for dependence. J Addict Med. 2009;3:1–7.

    PubMed  Google Scholar 

  61. Xu H, Li S, Song X, Li Z, Zhang D. Exploration of the association between dietary fiber intake and depressive symptoms in adults. Nutrition. 2018;54:48–53.

    PubMed  Google Scholar 

  62. Adjibade M, Andreeva VA, Lemogne C, Touvier M, Shivappa N, Hébert JR, et al. The inflammatory potential of the diet is associated with depressive symptoms in different subgroups of the general population. J Nutr. 2017;147:879–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gómez-Donoso C, Sánchez-Villegas A, Martínez-González MA, Gea A, et al. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: the SUN Project. Eur J Nutr. 2020;59:1093–103.

    PubMed  Google Scholar 

  64. Adjibade M, Julia C, Allès B, Touvier M, Lemogne C, Srour B, et al. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019;17:78.

    PubMed  PubMed Central  Google Scholar 

  65. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013.

    CAS  PubMed  Google Scholar 

  66. Noonan S, Zaveri M, Macaninch E, Martyn K. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr Prev Health. 2020;3:351–62.

    PubMed  PubMed Central  Google Scholar 

  67. Jacka FN, O’Neil A, Opie R, Itsiopoulos C, Cotton S, Mohebbi M, et al. A randomised controlled trial of dietary improvement for adults with major depression (the “SMILES” trial). BMC Med. 2017;15:23.

    PubMed  PubMed Central  Google Scholar 

  68. Lassale C, Batty GD, Baghdadli A, Jacka F, Sánchez-Villegas A, Kivimäki M, et al. Correction: healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. 2019;24:1094.

    PubMed  Google Scholar 

  69. Sadeghi O, Keshteli AH, Afshar H, Esmaillzadeh A, Adibi P. Adherence to Mediterranean dietary pattern is inversely associated with depression, anxiety and psychological distress. Nutr Neurosci. 2021;24:248–59.

    PubMed  Google Scholar 

  70. Wiss DA, Criscitelli K, Gold M, Avena N. Preclinical evidence for the addiction potential of highly palatable foods: current developments related to maternal influence. Appetite. 2017;115:19–27.

    PubMed  Google Scholar 

  71. Martins-Silva T, Vaz JDS, Hutz MH, Salatino-Oliveira A, Genro JP, Hartwig FP, et al. Assessing causality in the association between attention-deficit/hyperactivity disorder and obesity: a Mendelian randomization study. Int J Obes. 2019;43:2500–8.

    Google Scholar 

  72. Clasen MM, Riley AL, Davidson TL. Hippocampal-dependent inhibitory learning and memory processes in the control of eating and drug taking. Curr Pharm Des. 2020;26:2334–52.

    CAS  PubMed  Google Scholar 

  73. Webber L, Divajeva D, Marsh T, McPherson K, Brown M, Galea G, et al. The future burden of obesity-related diseases in the 53 WHO European-Region countries and the impact of effective interventions: a modelling study. BMJ Open. 2014;4:e004787.

    PubMed  PubMed Central  Google Scholar 

  74. Xu B-L, Wang R, Ma L-N, Dong W, Zhao Z-W, Zhang J-S, et al. Effects of caloric intake on learning and memory function in juvenile C57BL/6J mice. Biomed Res Int. 2015;2015:759803.

    PubMed  PubMed Central  Google Scholar 

  75. Kalyan-Masih P, Vega-Torres JD, Miles C, Haddad E, Rainsbury S, Baghchechi M, et al. Western high-fat diet consumption during adolescence increases susceptibility to traumatic stress while selectively disrupting hippocampal and ventricular volumes. eNeuro. 2016;3 https://doi.org/10.1523/ENEURO.0125-16.2016.

  76. Power R, Prado-Cabrero A, Mulcahy R, Howard A, Nolan JM. The role of nutrition for the aging population: implications for cognition and Alzheimer’s disease. Annu Rev Food Sci Technol. 2019;10:619–39.

    CAS  PubMed  Google Scholar 

  77. Sclafani A. Gut-brain nutrient signaling. Appetition vs satiation. Appetite. 2013;71:454–8.

    PubMed  Google Scholar 

  78. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron. 2011;69:664–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Rourke RW. The pathophysiology of obesity and obesity-related disease. In: Nguyen NT, Brethauer SA, Morton JM, Ponce J, Rosenthal RJ, editors. The ASMBS textbook of bariatric surgery. Cham: Springer International Publishing; 2020. p. 15–36.

    Google Scholar 

  80. Schoeller DA, Buchholz AC. Energetics of obesity and weight control: does diet composition matter? J Am Diet Assoc. 2005;105:S24–8.

    PubMed  Google Scholar 

  81. Moon J, Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J Obes Metab Syndr. 2020;29:166–73.

    PubMed  PubMed Central  Google Scholar 

  82. Davis C, Curtis C, Levitan RD, Carter JC, Kaplan AS, Kennedy JL. Evidence that “food addiction” is a valid phenotype of obesity. Appetite. 2011;57:711–7.

    PubMed  Google Scholar 

  83. Avena NM, Bocarsly ME, Hoebel BG. Animal models of sugar and fat bingeing: relationship to food addiction and increased body weight. Methods Mol Biol. 2012;829:351–65.

    CAS  PubMed  Google Scholar 

  84. Borengasser SJ, Kang P, Faske J, Gomez-Acevedo H, Blackburn ML, Badger TM, et al. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One. 2014;9:e84209.

    PubMed  PubMed Central  Google Scholar 

  85. Davis C. A narrative review of binge eating and addictive behaviors: shared associations with seasonality and personality factors. Front Psych. 2013;4:183.

    Google Scholar 

  86. Blanco-Gandía MC, Aracil-Fernández A, Montagud-Romero S, Aguilar MA, Manzanares J, Miñarro J, et al. Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet. Psychopharmacology. 2017;234:2337–52.

    PubMed  Google Scholar 

  87. Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 2005;86:11–4.

    CAS  PubMed  Google Scholar 

  88. Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience. 2005;134:737–44.

    CAS  PubMed  Google Scholar 

  89. Narayanaswami V, Thompson AC, Cassis LA, Bardo MT, Dwoskin LP. Diet-induced obesity: dopamine transporter function, impulsivity and motivation. Int J Obes. 2013;37:1095–103.

    CAS  Google Scholar 

  90. Davis C, Patte K, Levitan R, Reid C, Tweed S, Curtis C. From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite. 2007;48:12–9.

    PubMed  Google Scholar 

  91. Valdivia S, Cornejo MP, Reynaldo M, De Francesco PN, Perello M. Escalation in high fat intake in a binge eating model differentially engages dopamine neurons of the ventral tegmental area and requires ghrelin signaling. Psychoneuroendocrinology. 2015;60:206–16.

    CAS  PubMed  Google Scholar 

  92. Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, et al. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport. 2001;12:3549–52.

    CAS  PubMed  Google Scholar 

  93. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: a “transdiagnostic” theory and treatment. Behav Res Ther. 2003;41:509–28.

    PubMed  Google Scholar 

  94. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 2012;11:1–24.

    CAS  PubMed  Google Scholar 

  95. Boggiano MM, Chandler PC, Viana JB, Oswald KD, Maldonado CR, Wauford PK. Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav Neurosci. 2005;119:1207–14.

    CAS  PubMed  Google Scholar 

  96. Goldstone AP, Prechtl de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G, et al. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci. 2009;30:1625–35.

    PubMed  Google Scholar 

  97. Gordon EL, Lent MR, Merlo LJ. The effect of food composition and behavior on neurobiological response to food: a review of recent research. Curr Nutr Rep. 2020;9:75–82.

    PubMed  Google Scholar 

  98. Kroemer NB, Sun X, Veldhuizen MG, Babbs AE, de Araujo IE, Small DM. Weighing the evidence: variance in brain responses to milkshake receipt is predictive of eating behavior. NeuroImage. 2016;128:273–83.

    PubMed  Google Scholar 

  99. Schlögl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4:695–705.

    PubMed  Google Scholar 

  100. Leidy HJ, Lepping RJ, Savage CR, Harris CT. Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast-skipping teens: a pilot fMRI study. Obesity. 2011;19:2019–25.

    CAS  PubMed  Google Scholar 

  101. Lin Z, Qu S. Legend of weight loss: a crosstalk between the bariatric surgery and the brain. Obes Surg. 2020;30:1988–2002.

    PubMed  Google Scholar 

  102. Stice E, Burger K, Yokum S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. NeuroImage. 2013;67:322–30.

    PubMed  Google Scholar 

  103. Page KA, Seo D, Belfort-DeAguiar R, Lacadie C, Dzuira J, Naik S, et al. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 2011;121:4161–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kahathuduwa CN, Davis T, O’Boyle M, Boyd LA, Chin S-H, Paniukov D, et al. Effects of 3-week total meal replacement vs. typical food-based diet on human brain functional magnetic resonance imaging food-cue reactivity and functional connectivity in people with obesity. Appetite. 2018;120:431–41.

    PubMed  Google Scholar 

  105. Meule A. The psychology of food cravings: the role of food deprivation. Curr Nutr Rep. 2020;9:251–7.

    PubMed  PubMed Central  Google Scholar 

  106. Gee JM, Johnson IT. Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humans. Nutrition. 2005;21:1036–43.

    CAS  PubMed  Google Scholar 

  107. Fernstrom JD. Non-nutritive sweeteners and obesity. Annu Rev Food Sci Technol. 2015;6:119–36.

    CAS  PubMed  Google Scholar 

  108. Frank GKW, Oberndorfer TA, Simmons AN, Paulus MP, Fudge JL, Yang TT, et al. Sucrose activates human taste pathways differently from artificial sweetener. NeuroImage. 2008;39:1559–69.

    PubMed  Google Scholar 

  109. Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. NeuroImage. 2009;44:1008–21.

    PubMed  Google Scholar 

  110. Smeets PAM, de Graaf C, Stafleu A, van Osch MJP, van der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82:1011–6.

    CAS  PubMed  Google Scholar 

  111. Karl JP, Meydani M, Barnett JB, Vanegas SM, Goldin B, Kane A, et al. Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr. 2017;105:589–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hebebrand J, Albayrak O, Adan R, Antel J, Dieguez C, Jong J. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev. 2014;47:295–306.

    PubMed  Google Scholar 

  113. Guise S. Mini habits for weight loss: stop dieting. Form new habits. Change your lifestyle without suffering. Selective Entertainment LLC; 2016.

    Google Scholar 

  114. Schulte EM, Potenza MN, Gearhardt AN. A commentary on the “eating addiction” versus “food addiction” perspectives on addictive-like food consumption. Appetite. 2017;115:9–15.

    PubMed  Google Scholar 

  115. Ifland J, Preuss HG, Marcus MT, Rourke KM, Taylor W, Theresa WH. Clearing the confusion around processed food addiction. J Am Coll Nutr. 2015;34:240–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle C. Farrar .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilcox, C.E., Farrar, D.C. (2021). Highly Palatable Foods Are Addictive. In: Food Addiction, Obesity, and Disorders of Overeating. Springer, Cham. https://doi.org/10.1007/978-3-030-83078-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83078-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83077-9

  • Online ISBN: 978-3-030-83078-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics