Skip to main content

Intelligent Respiratory Motion Management for Radiation Therapy Treatment

  • Chapter
  • First Online:
Machine and Deep Learning in Oncology, Medical Physics and Radiology
  • 1395 Accesses

Abstract

A number of treatment sites for external-beam radiation therapy, such as lung, breast, pancreatic, and liver cancers, move as the patient breathes, which compromises the precision of their irradiation. Modern radiation treatment modalities attempt to deal with this by adapting the radiation delivery to the respiratory motion as it occurs. This requires system control processes that can detect and anticipate respiratory movement patterns on a patient-by-patient basis. Because breathing can be very idiosyncratic, this problem is a good candidate for machine learning algorithms that can be trained to model individual breathing patterns. This chapter describes the nature of the motion-compensated treatment problem, the issues in using machine learning algorithms to handle it, and the variety of management algorithms that have been investigated and implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler JR, Murphy MJ, Chang S, Hancock S. Image-guided robotic radiosurgery. Neurosurgery. 1999;44:1299–306.

    Google Scholar 

  2. Ahn S, Yi B, Suh Y, Kim J, Lee S, Shin S, Choi E. A feasibility study on the prediction of tumour location in the lung from skin motion. Br J Radiol. 2004;77:588–96.

    Article  Google Scholar 

  3. Bedford JL, Fast MF, Nill S, et al. Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment. Radiother Oncol. 2015;117(3):491–5.

    Article  Google Scholar 

  4. Bert C, Saito N, Schmidt A, Chaudhri N, Schardt D, Rietzel E. Target motion tracking with a scanned particle beam. Med Phys. 2007;34(12):4768–71.

    Article  Google Scholar 

  5. Booth JT, Caillet V, Hardcastle N, et al. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR. Radiother Oncol. 2016;121(1):19–25.

    Article  Google Scholar 

  6. Bukovsky I, Homma N, Ichiji K, Cejnek M, Slama M, Benes PM, Bila J. A fast neural network approach to predict lung tumor motion during respiration for radiation therapy applications. Biomed Res Int. 2015;

    Google Scholar 

  7. Choi SW, Chang Y, Kim N, Park SH, Song SY, Kang HS. Performance enhancement of respiratory tumor motion prediction using adaptive support vector regression: comparison with adaptive neural network method. Int J Imaging Systems and Technology. 2014;2(1):8–15.

    Article  Google Scholar 

  8. Davuluri P, Hobson RS, Murphy MJ, Najarian K. Performance comparison of Volterra predictor and neural network for breathing prediction. In: First international conference on biosciences. Cancun, Mexico: IEEE; 2010. p. 6–10.

    Google Scholar 

  9. Depuydt T, Verellen D, Hass O, Gevaert T, Linthout N, Duchateau M, Tournel K, Reynders T, Leysen K, Hoogeman M, Storme G, De Ridder M. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011;98(3):365–72.

    Article  Google Scholar 

  10. Ehrbar S, Schmid S, Johl A, et al. Comparison of multi-leaf collimator tracking and treatment-couch tracking during stereotactic body radiation therapy of prostate cancer. Radiother Oncol. 2017;125(3):445–52.

    Article  Google Scholar 

  11. Ernst F, Schweikard A. Robotic LINAC tracking based on correlation and prediction. In: Murphy MJ, editor. Motion adaptation in radiation therapy. New York: Taylor and Francis; 2012.

    Google Scholar 

  12. Falk M, Munck AF, Rosenchöld P, Keall P, Catell H. Cho B C, Poulson P, Povsner S, Sawant a, Zimmerman J and Korreman S, real-time dynamic MLC tracking for inversely optimised arc therapy. Radiother Oncol. 2010;94:218–23.

    Article  Google Scholar 

  13. Fast MF, Nill S, Bedford JL, Oelfke U. Dynamic tumor tracking using the Elekta agility MLC. Med Phys. 2014;41(11):111719.

    Article  Google Scholar 

  14. Fledelius W, Keall PJ, Cho B, et al. Tracking latency in image-based dynamic MLC tracking with direct image acquisition. Acta Oncol. 2011;50(6):952–9.

    Article  Google Scholar 

  15. Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiation Oncology. 2015;10(1):68.

    Article  Google Scholar 

  16. George R, Chung TD, Vedam SS, Ramakrishnan V, Mohan R, Weiss E, Keall PJ. Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65(3):924–33.

    Article  Google Scholar 

  17. George R, Suh Y, Murphy M, Williamson J, Weiss E, Deall P. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Med Phys. 2008;35(6):2356–65.

    Article  Google Scholar 

  18. Gierga DP, Brewer J, Sharp GC, Betke M, Willett CG, Chen GTY. The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys. 2005;61(5):1551–8.

    Article  Google Scholar 

  19. Goodband JH, Haas OCL, Mills JA. A comparison of neural network approaches for on-line prediction in IGRT. Med Phys. 2008;35(3):1113–22.

    Article  Google Scholar 

  20. Hansen R, Ravkilde T, Worm ES, et al. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator. Med Phys. 2016;43(5):2387.

    Article  Google Scholar 

  21. Haykin S. Neural networks and learning machines. 3rd ed. London: Pearson; 2009.

    Google Scholar 

  22. Haykin S. Kalman filtering and neural networks. New York: Wiley Interscience; 2001.

    Book  Google Scholar 

  23. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80.

    Article  Google Scholar 

  24. Hoisak JDP, Sixel KE, Tirona R, Cheung PCF, Pignol J-P. Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys. 2004;60(4):1298–306.

    Article  Google Scholar 

  25. Hoisak JDP, Sixel KE, Tirona R, Cheung PCF, Pignol J-P. Prediction of lung tumour position based on spirometry and on abdominal displacement: accuracy and reproducibility. Radiother Oncol. 2006;78(3):339–46.

    Article  Google Scholar 

  26. Hoogeman M, Prévost J-B, Nuyttens J, Pöll J, Levendag P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the Cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74:297–303.

    Article  Google Scholar 

  27. Isaksson M, Jalden J, Murphy MJ. On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications. Med Phys. 2005;32(12):3801–9.

    Article  Google Scholar 

  28. Kakar M, Mystrom H, Aarup LR, Nottrup TJ, Olsen DR. Respiratory motion prediction by using the adaptive neuro fuzzy inference system(ANFIS). Phys Med Biol. 2005;50:4721–8.

    Article  Google Scholar 

  29. Kanoulas E, Aslam JA, Sharp GC, Berbeco RI, Nishioka S, Shirato H, Jiang SB. Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation. Phys Med Biol. 2007;52(17):5443–56.

    Article  Google Scholar 

  30. Keall PJ, Cattell H, Pokhrel D, Dieterich S, Wong K, Murphy MJ, Vedam SS, Wijesooriya K, Mohan R. Geometric accuracy of a system for real time target tracking with a dynamic MLC. Int J Rad Onc Biol Phys. 2006;65(5):1579–84.

    Article  Google Scholar 

  31. Koch N, Liu HH, Starkschall G, Jacobson M, Forster KM, Liao Z, Komaki R, Stevens CW. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: part I–correlating internal lung motion with skin fiducial motion. Int J Radiat Oncol Biol Phys. 2004;60(5):1459–72.

    Article  Google Scholar 

  32. Krauss A, Nill S, Oelfke U. The comparative performance of four respiratory motion predictors for real-time tumour tracking. Phys Med Biol. 2011;56:5303–17.

    Article  Google Scholar 

  33. Lee SJ, Motai Y, Murphy M. Respiratory motion estimation with hybrid implementation of extended Kalman filter. IEEE Trans Ind Electron. 2012;59(11):4421–32.

    Article  Google Scholar 

  34. Liang P, Pandit JJ, Robbins PA. Non-stationarity of breath-by-breath ventilation and approaches to modeling the phenomenon. In: Semple SJG, Adams L, Whipp BJ, editors. Modeling and control of ventilation. New York: Plenum; 1995. p. 117–21.

    Chapter  Google Scholar 

  35. Lin H, Zou W, Li T, Feigenberg SJ, Teo B-K, Dong L. A super-learner model for tumor motion prediction and management in radiation therapy: development and feasibility evaluation. Nat Sci Rep. 2019a;14868

    Google Scholar 

  36. Lin H, Shi C, Wang B, Chan MF, Tang X, Ji W. Towards real-time respiratory motion prediction based on long short- term memory neural networks. Phys Med Biol. 2019b;64(8):1361–72.

    Article  Google Scholar 

  37. Mafi M, Moghadam SM. Real-time prediction of tumor motion using a dynamic neural network. Med and Biol Engineering and Computing. 2020;58:129–39.

    Article  Google Scholar 

  38. Malinowski K, D’Soua WD. Couch-based target alignment. In: Murphy MJ, editor. Motion adaptation in radiation therapy. New York: Taylor and Francis; 2012.

    Google Scholar 

  39. McQuaid D, Webb S. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam’s-eye view. Phys Med Biol. 2006;51:4819–39.

    Article  Google Scholar 

  40. McQuaid D, Webb S. Target-tracking deliveries using conventional multileaf collimators planned with 4D direct-aperture optimization. Phys Med Biol. 2008;53:4013–29.

    Article  Google Scholar 

  41. McQuaid D, Partridge M, Symonds Tayler R, Evans PM, Webb S. Target-tracking deliveries on an Elekta linac: a feasibility study. Phys Med Biol. 2009;54:3563–78.

    Article  Google Scholar 

  42. McQuaid D, Webb S. Fundamentals of tracking with a linac MLC. In: Murphy MJ, editor. Motion adaptation in radiation therapy. New York: Taylor and Francis; 2012.

    Google Scholar 

  43. Minsky M, Papert S. Perceptrons. Cambridge: MIT Press; 1969.

    MATH  Google Scholar 

  44. Murphy MJ, Jalden J, Isaksson M. Adaptive filtering to predict lung tumor breathing motion free breathing. Proceedings of the 16th International Congress on Computer-assisted Radiology and Surgery. Paris; 2002. P. 539–544.

    Google Scholar 

  45. Murphy MJ, Tracking moving organs in real time. In: Chen S and Bortfeld R, editors. Seminars in radiation oncology, vol.14 (1). 2004. p. 91–100.

    Google Scholar 

  46. Murphy MJ, Dieterich S. Comparative performance of linear and nonlinear neural networks to predict irregular breathing. Phys Med Biol. 2006;51:5903–14.

    Article  Google Scholar 

  47. Murphy MJ. Using neural networks to predict breathing motion. In: Seventh International Congress on Machine Learning Applications. San Diego, CA: IEEE; 2008. p. 528–32.

    Google Scholar 

  48. Murphy MJ, Pokhrel D. Optimization and evaluation of an adaptive neural network filter to predict respiratory motion. Med Phys. 2009;36(1):40–7.

    Article  Google Scholar 

  49. Neicu T, Shirato H, Seppenwoolde Y. Synchronized moving aperture radiation therapy (SMART); average tumour trajectory for lung patients. Phys Med Biol. 2003;48:587–98.

    Article  Google Scholar 

  50. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol/Biol/Phys. 2002;52:1389–99.

    Article  Google Scholar 

  51. Parzen E. On estimation of a probability density function and mode. Ann Math Stat. 1962;33:1065–76.

    Article  MathSciNet  MATH  Google Scholar 

  52. Podder TK, Buzurovic I, Galvin JM, Yu Y. Dynamics-based decentralized control of robotic couch and multi-leaf collimators for tracking tumor motion. IEEE Int Conf Robotics Automat. 2008;19(23):2496–502.

    Google Scholar 

  53. Puskorius GV, Feldkamp LA. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans Neural Netw. 1994;5(2):279–97.

    Article  Google Scholar 

  54. Qiu P, D’Souza WD, McAvoy TJ, Liu KJR. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy. Phys Med Biol. 2007;52:5831–54.

    Article  Google Scholar 

  55. Rangaraj D, Papiez L. Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets. Med Phys. 2005;32:1802–17.

    Article  Google Scholar 

  56. Ren Q, Nishioka S, Shirato H, Berbeco RI. Adaptive prediction of respiratory motion for motion compensation radiotherapy. Phys Med Biol. 2007;52(22):6651–61.

    Article  Google Scholar 

  57. Riaz N, Shanker P, Wiersma R, Gudmundsson O, Mao W, Widrow B, Xing L. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression. Phys Med Biol. 2009;54(19):5735–48.

    Article  Google Scholar 

  58. Saito M, Sano N, Ueda K, et al. Technical note: evaluation of the latency and the beam characteristics of a respiratory gating system using an Elekta linear accelerator and a respiratory indicator device. Med Phys. 2018;45(1):74–80.

    Article  Google Scholar 

  59. Sawant A, Venkat R, Srivastava V, Carlson D, Povzner S, Cattell H, Keall P. management of three-dimensional intrafraction motion through real-time DMLC tracking. Med Phys. 2008;35:2050–61.

    Article  Google Scholar 

  60. Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR. Robotic motion compensation for respiratory movement during radiosurgery. Computer-Aided Surgery. 2000;5:263–77.

    Article  Google Scholar 

  61. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys. 2004;31(1):2738–41.

    Article  Google Scholar 

  62. Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol. 2004;49(3):425–40.

    Article  Google Scholar 

  63. Solberg TD, Medin PM, Ramirez E, Ding C, Foster RD, Yordy J. Commissioning and initial stereotactic ablative radiothereapy experience with Vero. J Appl Clin Med Phys. 2014;15(2):205–25.

    Article  Google Scholar 

  64. D’Souza WD, Naqvi SA, Uu CX. Real-time intra-fraction motion tracking using the treatment couch: a feasibility study. Phys Med Biol. 2005;50:4021–33.

    Article  Google Scholar 

  65. D’Souza WD, McAvoy TJ. An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation. Med Phys. 2006;33(12):4701–9.

    Article  Google Scholar 

  66. Specht DF. Probabilistic neural networks. Neural Netw. 1990;3:109–18.

    Article  Google Scholar 

  67. Sun WZ. Jiang;MY, Ren L, dang J, you T, and Yin F-F, respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network. Phys Med Biol. 2018;62(17):6822–35.

    Article  Google Scholar 

  68. Tacke MB, Nill S, Krauss A, Oelfke U. Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC. Med Phys. 2010;37:753–61.

    Article  Google Scholar 

  69. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subject. J Appl Physiol. 1988;65:309–17.

    Article  Google Scholar 

  70. Tsunashima Y, Sakae T, Shioyama Y, et al. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. Int J Radiation Oncology Biol Phys. 2004;60(3):951–8.

    Article  Google Scholar 

  71. Vapnik V. The nature of statistical learning theory. New York: Springer; 1995.

    Book  MATH  Google Scholar 

  72. Wang R, Liang X, Zhu X, et al. Feasibility of respiration prediction based on deep Bi-LSTM for real-time tumor tracking. IEEE Access; 2018.

    Book  Google Scholar 

  73. Wiersma RD, McCabe BP, Belcher AH, Jensen PJ, Smith B, Aydogan B. Technical note: high temporal resolution characterization of gating response time. Med Phys. 2016;43(6):2802–6.

    Article  Google Scholar 

  74. Williams RJ. Training recurrent networks using the extended Kalman filter. Int Joint Conf on Neural Networks. 1992;4:241–6.

    Article  Google Scholar 

  75. Wu H, et al. Gating based on internal/external signals with dynamic correlation updates. Phys Med Biol. 2008;53(24):7137–50.

    Article  Google Scholar 

  76. Yan H, Yin F-F, Zhu G-P, Ajlouni M, Kim JH. Adaptive prediction of internal target motion using external marker motion: a technical study. Phys Med Biol. 2006;51(1):31–44.

    Article  Google Scholar 

  77. Zhang T, et al. Application of the spirometer in respiratory gated radiotherapy. Med Phys. 2003;30(12):3165–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, M.J. (2022). Intelligent Respiratory Motion Management for Radiation Therapy Treatment. In: El Naqa, I., Murphy, M.J. (eds) Machine and Deep Learning in Oncology, Medical Physics and Radiology. Springer, Cham. https://doi.org/10.1007/978-3-030-83047-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83047-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83046-5

  • Online ISBN: 978-3-030-83047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics