Skip to main content

COVID-19 Associated Coagulopathy: The Thrombin Burst

  • Chapter
  • First Online:
The Coagulation Labyrinth of Covid-19
  • 420 Accesses

Abstract

Thrombin is the cornerstone of the coagulation process. Without thrombin, fibrinogen cannot be converted into fibrin, and no stable clot can be formed. Thrombin generation (TG) is a complex process; however, the major driver of in vivo thrombin generation is tissue factor (TF). TF is in turn produced when the endothelial layer is destroyed (finalistic process) but can be released by a number of cells, and namely monocytes (blood-borne TF). In this second case, under inflammatory/infective reaction, TF represents the link between inflammation and coagulation. Given the infective and inflammatory pattern of COVID-19, the pattern of TG in severe cases of COVID-19 is of potential interest, particularly in the setting of the well-known thrombotic complications of this disease. TG can be addressed with different laboratory assays; however, the conventional tests (prothrombin time and activated partial thromboplastin time) are highly nonspecific, and offer a limited information. Point-of-care coagulation tests reflect similar limitations when the reaction time is considered as a marker of TG. Therefore, more specific, nonconventional tests are required to address TG in the setting of COVID-19. These include computerized automated thrombography (CAT), the measure of thrombin inactivation by antithrombin (thrombin-antithrombin complex, TAT), and of the marker of TG prothrombin fragment 1.2 (PF 1.2). Even considering that many biases are to be considered (severity of the disease, presence of thromboembolic complications, and, most of all, different degrees of pharmacological anticoagulation), the existing studies offer a scenario of a “thrombin burst” that is probably of higher degree than what is observed in other sepsis patterns, and that often appears resistant to the standard anticoagulant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem. 2016;62:699–707.

    Article  CAS  PubMed  Google Scholar 

  2. Morrissey JH. Tissue factor: a key molecule in hemostatic and nonhemostatic systems. Int J Hematol. 2004;79:103–8.

    Article  CAS  PubMed  Google Scholar 

  3. Mann KG. Thrombin formation. Chest. 2003;124(Suppl 3):4S–10S.

    Article  CAS  PubMed  Google Scholar 

  4. Dahlback B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol. 2004;79:109–16.

    Article  PubMed  Google Scholar 

  5. Toukh M, Siemens DR, Black A, et al. Thromboelastography identifies hypercoagulablilty and predicts thromboembolic complications in patients with prostate cancer. Thromb Res. 2014;133:88–95.

    Article  CAS  PubMed  Google Scholar 

  6. Liang H, Yang CX, Li H, Wen XJ, Zhou QL, Gu MN. The effects of preloading infusion with hydroxyethyl starch 200/0.5 or 130/0.4 solution on hypercoagulability and excessive platelet activation of patients with colon cancer. Blood Coagul Fibrinolysis. 2010;21:406–13.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z-W, Ye P-J. Clinical analysis of acute cerebral infarction accompanied with lung cancer. J Acute Dis. 2016;5:307.

    Article  Google Scholar 

  8. Butler MJ. Thromboelastography during and after elective abdominal surgery. Thromb Haemost. 1978;39:488–95.

    Article  CAS  PubMed  Google Scholar 

  9. Howland WS, Castro EB, Fortner JB, Gould P. Proceedings: hypercoagulability. Thromboelastographic monitoring during extensive hepatic surgery. Arch Surg. 1974;108:605–8.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt DE, Chaireti R, Bruzelius M, Holmström M, Antovic J, Ågren A. Correlation of thromboelastography and thrombin generation assays in warfarin-treated patients. Thromb Res. 2019;178:34–40.

    Article  CAS  PubMed  Google Scholar 

  11. Dargaud Y, Trzeciak MC, Bordet JC, Ninet J, Negrier C. Use of calibrated automated thrombinography +/− thrombomodulin to recognize the prothrombotic phenotype. Thromb Haemost. 2006;96:562–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tripodi A. The long-awaited whole-blood thrombin generation test. Clin Chem. 2012;58:1173–5.

    Article  CAS  PubMed  Google Scholar 

  13. White D, MacDonald S, Edwards T, et al. Evaluation of COVID-19 coagulopathy; laboratory characterization using thrombin generation and nonconventional haemostasis assays. Int J Lab Hematol. 2021;43:123–30.

    Article  PubMed  Google Scholar 

  14. Nougier C, Benoit R, Dimon M, et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-COV2 associated thrombosis. J Thromb Haemost. 2020;18:2215–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chistolini A, Ruberto F, Alessandri F, et al. Effect of low or high doses of low-molecular-weight heparin on thrombin generation and other haemostasis parameters in critically ill patients with COVID-19. Br J Haematol. 2020;190:e214–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bouck EG, Denorme F, Holle LA, et al. COVID-19 and sepsis are associated with different abnormalities in plasma procoagulant and fibrinolytic activity. Arterioscler Thromb Vasc Biol. 2021;41:401–14.

    CAS  PubMed  Google Scholar 

  17. Innocenti F, Gori AM, Giusti B, et al. Prognostic value of sepsis-induced coagulation abnormalities: an early assessment in the emergency department. Intern Emerg Med. 2019;14:459–66.

    Article  PubMed  Google Scholar 

  18. Koyama K, Madoiwa S, Nunomiya S, et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18:R13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leithäuser B, Matthias FR, Nicolai U, Voss R. Hemostatic abnormalities and the severity of illness in patients at the onset of clinically defined sepsis. Possible indication of the degree of endothelial cell activation? Intensive Care Med. 1996;22:631–6.

    Article  PubMed  Google Scholar 

  20. Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286:1869–78.

    Article  CAS  PubMed  Google Scholar 

  21. Moosavi M, Wooten M, Goodman A, et al. Retrospective analyses associate hemostasis activation biomarkers with poor outcomes in patients with COVID-19. Am J Clin Pathol. 2021;155:498–505.

    Article  CAS  PubMed  Google Scholar 

  22. Blasi A, von Meijenfeldt FA, Adelmeijer J, et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost. 2020;18:2646–53.

    Article  CAS  PubMed  Google Scholar 

  23. Jin X, Duan Y, Bao T, et al. The values of coagulation function in COVID-19 patients. PLoS One. 2020;15:e0241329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maclean PS, Tait RC. Hereditary and acquired antithrombin deficiency: epidemiology, pathogenesis and treatment options. Drugs. 2007;67:1429–40.

    Article  CAS  PubMed  Google Scholar 

  25. Pleym H, Videm V, Wahba A, et al. Heparin resistance and increased platelet activation in coronary surgery patients treated with enoxaparin preoperatively. Eur J Cardiothorac Surg. 2006;29:933–40.

    Article  PubMed  Google Scholar 

  26. Ranucci M, Isgrò G, Cazzaniga A, Soro G, Menicanti L, Frigiola A. Predictors for heparin resistance in patients undergoing coronary artery bypass grafting. Perfusion. 1999;14:437–42.

    Article  CAS  PubMed  Google Scholar 

  27. Ranucci M, Antithrombin III. Key factor in extracorporeal circulation. Minerva Anestesiol. 2002;68:454–7.

    CAS  PubMed  Google Scholar 

  28. Dujardin RWG, Hilderink BN, Haksteen WE, et al. Biomarkers for the prediction of venous thromboembolism in critically ill COVID-19 patients. Thromb Res. 2020;196:308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calderon-Lopez MT, Garcia-Leon N, Gomez-Arevalillo S, Martin-Serrano P, Matilla-Garcia A. Coronavirus disease 2019 and coagulopathy: other prothrombotic coagulation factors. Blood Coagul Fibrinolysis. 2021;32:44–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18:1747–51.

    Article  CAS  PubMed  Google Scholar 

  31. Corrêa TD, Cordioli RL, Campos Guerra JC, et al. Coagulation profile of COVID-19 patients admitted to the ICU: an exploratory study. PLoS One. 2020;15:e0243604.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Thrombolysis. 2020;50:580–6.

    Article  CAS  PubMed  Google Scholar 

  33. Gazzaruso C, Paolozzi E, Valenti C, et al. Association between antithrombin and mortality in patients with COVID-19. A possible link with obesity. Nutr Metab Cardiovasc Dis. 2020;30:1914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lippi G, Henry BM, Sanchis-Gomar F. Plasma antithrombin values are significantly decreased in Coronavirus Disease 2019 (COVID-19) patients with severe illness. Semin Thromb Hemost. 2020; https://doi.org/10.1055/s-0040-1716873.

  35. Capecchi M, Scalambrino E, Griffini S, et al. Relationship between thrombin generation parameters and prothrombin fragment 1 + 2 plasma levels. Int J Lab Hematol. 2021; https://doi.org/10.1111/ijlh.13462.

  36. Koskela SM, Joutsi-Korhonen L, Mäkelä SM, et al. Diminished coagulation capacity assessed by calibrated automated thrombography during acute Puumala hantavirus infection. Blood Coagul Fibrinolysis. 2018;29:55–60.

    Article  PubMed  Google Scholar 

  37. Joly B, Barbay V, Borg JY, Le Cam-Duchez V. Comparison of markers of coagulation activation and thrombin generation test in uncomplicated pregnancies. Thromb Res. 2013;132:386–91.

    Article  CAS  PubMed  Google Scholar 

  38. Nahab F, Sharashidze V, Liu M, et al. Markers of coagulation and hemostatic activation aid in identifying causes of cryptogenic stroke. Neurology. 2020;94:e1892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu M, Ellis D, Duncan A, Belagaje S, Belair T, Henriquez L, Rangaraju S, Nahab F. The utility of the markers of coagulation and hemostatic activation profile in the management of embolic strokes of undetermined source. J Stroke Cerebrovasc Dis. 2021;30:105592.

    Article  PubMed  Google Scholar 

  40. Skjeflo EW, Christiansen D, Fure H, et al. Staphylococcus aureus-induced complement activation promotes tissue factor-mediated coagulation. J Thromb Haemost. 2018;16:905–18.

    Article  CAS  PubMed  Google Scholar 

  41. Okamoto K, Takaki A, Takeda S, Katoh H, Ohsato K. Coagulopathy in disseminated intravascular coagulation due to abdominal sepsis: determination of prothrombin fragment 1 + 2 and other markers. Haemostasis. 1992;22:17–24.

    CAS  PubMed  Google Scholar 

  42. Hoppensteadt D, Tsuruta K, Cunanan J, et al. Thrombin generation mediators and markers in sepsis-associated coagulopathy and their modulation by recombinant thrombomodulin. Clin Appl Thromb Hemost. 2014;20:129–35.

    Article  CAS  PubMed  Google Scholar 

  43. Prakash S, Verghese S, Roxby D, Dixon D, Bihari S, Bersten A. Changes in fibrinolysis and severity of organ failure in sepsis: a prospective observational study using point-of-care test--ROTEM. J Crit Care. 2015;30:264–70.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Samkari H, Song F, Van Cott EM, Kuter DJ, Rosovsky R. Evaluation of the prothrombin fragment 1.2 in patients with coronavirus disease 2019 (COVID-19). Am J Hematol. 2020;95:1479–85.

    Article  CAS  PubMed  Google Scholar 

  45. Ranucci M, Sitzia C, Baryshnikova E, et al. Covid-19-Associated coagulopathy: biomarkers of thrombin generation and fibrinolysis leading the outcome. J Clin Med. 2020;9:3487.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranucci, M., Aloisio, T. (2022). COVID-19 Associated Coagulopathy: The Thrombin Burst. In: Ranucci, M. (eds) The Coagulation Labyrinth of Covid-19. Springer, Cham. https://doi.org/10.1007/978-3-030-82938-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82938-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82937-7

  • Online ISBN: 978-3-030-82938-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics