Skip to main content

Some Features of Electromechanical Oscillations Modes Identification in Power Systems

  • Chapter
  • First Online:
Power Systems Research and Operation

Abstract

Power systems are the high-order time-varying nonlinear systems. In power systems, especially in interconnected ones, low-frequency oscillations (LFO) occur from time to time leading to accidents with severe consequences. Modern LFO monitoring systems based on Phasor Measurement Units (PMU) are designed to timely identify the danger of the power system stability violation. This monograph chapter presents some results of studies various signal analysis methods to their use in real-time to identify the modes of electromechanical oscillations in power systems. Comparison application results of different signal analysis methods oriented to real-time use is presented. It is shown that when these methods are using in real-time under certain conditions the differing identification results of LFO modes may be obtained. To provide required reliability of the LFO modes identification few the most suitable for real-time application in LFO monitoring systems methods were selected. Taking into account the possibility of obtaining by such methods differing identification results the special procedure was proposed to process and to generalize corresponding identification results. Such approach makes it possible to obtain adequate estimates of LFO modes parameters more reliably. Two examples of the LFO analysis using PMU data are given. During such analyzing the ensemble of selected methods and the data obtained from PMU were used. These LFO arose in the Interconnected Power System of Ukraine on February 16, 2016 and on February 18, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Report on Power System oscillations experienced in Indian Grid on 9th. 10th. 11th and 12th August 2014. POSOCO. (2014)

    Google Scholar 

  2. Grigsby, L.L.: The power system stability and control. Taylor & Francis Group. London. (2001). https://doi.org/10.4324/b12113

    Article  Google Scholar 

  3. Kundur, P.: Power system stability and control. McGraw-Hill, New York (1994)

    Google Scholar 

  4. Debasish, M., Chakrabarti, A., Sengupta, A.: Power system small signal stability analysis and control. Waltham Mass: Academic Press. London. (2014). doi: https://doi.org/10.1016/C2013-0-18470-X

  5. Bikash, P., Balarko, Ch.: Robust control in power systems. Springer Inc. New York. (2005). doi: https://doi.org/10.1007/b136490

  6. Zhang, G.: EPRI power systems dynamics tutorial. Final Report. Electric power research institute. Palo Alto. (2009)

    Google Scholar 

  7. Wang, X.-F., Song, Y., Irving, M.: Modern power systems. Springer Science & Business Media. New York. (2010). doi: https://doi.org/10.1007/978-0-387-72853-7

  8. Prasertwong, K., Mirthulananthan, N., Thakur, D.: Understanding low frequency oscillation in power systems. Int. J. Electr. Eng. Educ. 47(3), 248–262 (2010). https://doi.org/10.7227/IJEEE.47.3.2

    Article  Google Scholar 

  9. Yang, J.-Z., Liu, C.-W.-G.: A hybrid method for the estimation of power system low-frequency oscillation parameters. IEEE Trans. Power Systems 22(4), 2115–2123 (2007). https://doi.org/10.1109/PES.2008.4595986

    Article  MathSciNet  Google Scholar 

  10. Shi, J.H., Li, P., Wu, X.C. et al.: Implementation of an adaptive continuous real-time control system based on WAMS. Paper presented at the CIGRÉ 2-nd International Conference “Monitoring of Power System Dynamics Performance”. Saint Petersburg. Russian Federation. 28–30 April 2008. (2008)

    Google Scholar 

  11. UCTE Final Report―System Disturbance on 4 November 2006 (2007). https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf. Accessed 06 Mar 2021

  12. Duan, G., Sun, X., Wu, J.T. et al.: Low frequency oscillation monitoring and assessment in CSS200 WAMS. Paper presented at the CIGRÉ 2-nd International Conference “Monitoring of Power System Dynamics Performance”. Saint Petersburg. Russian Federation. 28–30 April 2008. (2008)

    Google Scholar 

  13. Arango, O.J., Sanchez, H.M., Wilson, D.H.: Low frequency oscillations in the Colombian power system―identification and remedial actions. Paper presented at the CIGRE Session. Paris. France. August 22–27. (2010)

    Google Scholar 

  14. Despa, D., Mitani, Y., Li, Ch. et al.: Inter-area power oscillation mode for Singapore–Malaysia interconnected power system based on phasor measurements with auto spectrum analysis. In Proceedings of the 17th Power Systems Computation Conference (PSCC) 2011. Stockholm. Sweden. 22–26 August 2011. vol 2: 847–852. (2011)

    Google Scholar 

  15. Analysis of CE Inter-Area Oscillations of 19 and 24 February 2011. ENTSO-E SG SPD Report. (2011). https://www.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/RG_SOC_CE/Top7_110913_CE_inter-area-oscil_feb_19th_24th_final.pdf. Accessed 06 Mar 2021

  16. Report on the Grid Disturbances on 30th July and 31st July 2012. (2012). http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf. Accessed 06 Mar 2021

  17. Khanna, R., Manrai, P.: Damping of low frequency oscillations using GA based unified power flow controller. Intern. J. Eng. Adv. Technol. 2(1), 307–311 (2010)

    Google Scholar 

  18. Zhang, L., Harnefors, L., Rey, P.: Power system reliability and transfer capability improvement by VSCHVDC (HVDC Light©). Paper presented at the CIGRÉ Regional Meeting “Security and Reliability of Electric Power Systems”. Tallinn. Estonia. 18–20 June 2007. (2007)

    Google Scholar 

  19. Abraham, R.J., Patra, D.A.: Damping oscillations in Tie-power and Area frequencies in a Thermal power system with SMES-TCPS combination. J. Elect. Syst. 7(1), 71–80 (2011)

    Google Scholar 

  20. Neely, J.C., Byrne, R.H., Elliott, R.T. et al.: Damping of inter-area oscillations using energy storage. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting. Vancouver. British Columbia. Canada. 21–25 July 2013. Curran Associates. Inc.. pp. 2808–2812. (2013). doi: https://doi.org/10.1109/PESMG.2013.6672775

  21. Sui, X., Tang, Y., He, H.: Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming. IEEE Trans. Power Syst. 29(5), 2539–2548 (2014). https://doi.org/10.1109/TPWRS.2014.2305977

    Article  Google Scholar 

  22. Febres, C.A.T., Araujo, P.B., Furini, M.A.: Damping of low-frequency oscillations by supplementary control of power system stabilizers. Trends Appl. Comput. Mathemat. 9(2), 223–232 (2008). https://doi.org/10.5540/tema.2008.09.02.0223

    Article  Google Scholar 

  23. Kamwa, I., Samantaray, S.R., Joos, G.: Optimal integration of disparate C37.118 PMUs in wide-area PSS with electromagnetic transients. IEEE Trans. Power Syst. 28(4), 4760–4770. (2013). doi: https://doi.org/10.1109/TPWRS.2013.2266694

  24. Messina, A.R., Vittal, V.: Nonlinear. Non-stationary analysis of interarea oscillations via Hilbert spectral analysis. IEEE Trans. Power Syst. 21(3), 1234–1241. (2006). doi: https://doi.org/10.1109/TPWRS.2006.876656

  25. Huang, N.E., Shen, Zh., Long, S.R. et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Soc. A 454(1971), 903–995. (1998). doi: https://doi.org/10.1098/rspa.1998.0193

  26. Sergienko, A.B.: Tsifrovaya obrabotka signalov (Signal digital processing). BHV-Peterburg. Sankt-Peterburg. (Rus). (2011)

    Google Scholar 

  27. Marple, S.L., Jr.: Digital spectral analysis. Dover Publications. Inc., New York (2019)

    Google Scholar 

  28. Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70(9), 1055–1096 (1982). https://doi.org/10.1109/PROC.1982.12433

    Article  Google Scholar 

  29. Liu, G., Quintero, J., Venkatasubramanian, V.: Oscillation monitoring system based on wide area synchrophasors in power systems. In Proceedings of the 2007 iREP Symposium-Bulk Power System Dynamics and Control – VII Revitalizing Operational Reliability. Charleston. South Carolina. USA. 19–24 August 2007. Curran Associates. Inc. pp 340–350. (2007). doi: https://doi.org/10.1109/IREP.2007.4410548

  30. Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Transactions on Acoustics. Speech. Signal Proc. 38(5), 814–824. (1990). doi: https://doi.org/10.1109/29.56027

  31. Gong, Y., Guzmán, A.: Synchrophasor-based online modal analysis to mitigate power system interarea oscillation. J. Reliable Power 2(2), 42–47 (2011)

    Google Scholar 

  32. Dyakonov, V.P.: Veyvlety. Ot teorii - k praktike (Wavelets. From the theory – to the practice). Solon-R. Moskva. (Rus). (2004)

    Google Scholar 

  33. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996). https://doi.org/10.1109/78.492555

    Article  Google Scholar 

  34. Assous, S., Boashash, B.: Evaluation of the modified S-transform for time-frequency synchrony analysis and source localization. EURASIP J. Adv. Signal Proc. 49(1). (2012). doi: https://doi.org/10.1186/1687-6180-2012-49

  35. Rilling, G., Flandrin, P., Gonçalves, P.: On empirical mode decomposition and it’s algorithms. In Proceedings of the 6th IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP ‘03). Grado. Italy. 8–11 July 2003. (2003)

    Google Scholar 

  36. Battista, B.M., Knapp, C., McGee, T., et al.: Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 72(2), H29–H37 (2007). https://doi.org/10.1190/1.2437700

    Article  Google Scholar 

  37. Ding, Q., Kay, S.: Inconsistency of the MDL: on the performance of model order selection criteria with increasing signal-to-noise ratio. IEEE Trans. Signal Process. 59(5), 1959–1969 (2011). https://doi.org/10.1109/TSP.2011.2108293

    Article  MathSciNet  MATH  Google Scholar 

  38. Kitamura, M., Takada, J., Araki, K.: A model order estimation in the matrix pencil method for the transient response of a microwave circuit discontinuity. IEICE Trans. Electr. E82-C(11), 2081–2085. (1999). doi: 10.1.1.29.7869

    Google Scholar 

  39. Butkevych, O.F.: Problemno-orientovanyi monitoryng rezhymiv OES Ukrainy (Problem-oriented monitoring of Ukrainian IPS’s operational conditions). Tekhnichna elektrodynamika 5, 39–52. (Ukr) (2007)

    Google Scholar 

  40. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies (IEEE Std 421.5–2016)

    Google Scholar 

  41. Fault recorder FR947-M PowerProbe:LogicLab S. R. L. (2009)

    Google Scholar 

  42. Liu, Y., Zhan, L., Zhang, Y., et al.: Wide-area measurement system development at the distribution level: an FNET/GridEye example. IEEE Trans. Power Delivery 31(2), 721–731 (2016). https://doi.org/10.1109/TPWRD.2015.2478380

    Article  Google Scholar 

  43. Thambirajah, J., Thornhill, N.F., Pal, C.B.: A multivariate approach towards inter-area oscillation damping estimation under ambient conditions via independent component analysis and random decrement. IEEE Trans. Power Syst. 26(1), 315–322 (2011). https://doi.org/10.1109/TPWRS.2010.2050607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butkevych, O., Chyzhevskyi, V. (2022). Some Features of Electromechanical Oscillations Modes Identification in Power Systems. In: Kyrylenko, O., Zharkin, A., Butkevych, O., Blinov, I., Zaitsev, I., Zaporozhets, A. (eds) Power Systems Research and Operation. Studies in Systems, Decision and Control, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-030-82926-1_3

Download citation

Publish with us

Policies and ethics