Skip to main content

L-asparaginase: Insights into the Marine Sources and Nanotechnological Advancements in Improving Its Therapeutics

  • Chapter
  • First Online:
Engineered Nanomaterials for Innovative Therapies and Biomedicine

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 583 Accesses

Abstract

L-asparaginase, a cancer therapeutic enzyme, has attracted a great deal of attention from the scientific community. Although it was adopted in the treatment of leukaemia decades ago, its clinical formulations need to be improved. Current asparaginase formulations are derived from the terrestrial microorganisms, Escherichia coli and Erwinia chrysanthemi that elicit severe side effects to the patient. Moreover, these forms of asparaginase have been observed with a short half-life in the blood circulation, thereby requiring frequent dosage of the drug. Altogether, this results in increasing the cost of the treatment with lower clinical efficacy. Therefore, considerable research has been prompted in the acquisition of alternative sources of asparaginase with improved biochemical properties. Among the different sources, the marine environment is sparsely explored for biological products and enzymes. Marine resources that encompass vast diversity are a treasure trove of novel natural products. This chapter features the potential of marine-derived L-asparaginase and underlines the milestone chronicles of events in its discovery and adoption in the treatment of acute lymphoblastic leukaemia. Further, the nanoformulation of L-asparaginase has also been discussed, and the importance of bioinspired nanocarriers and nanozymes in the development of cancer therapeutics has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuchowski A, Kazo GM, Verhoest CR Jr, Van Es T, Kafkewitz D, Nucci ML, Viau AT, Davis FF (1984) Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem Biophys 7(2):175–186

    CAS  Google Scholar 

  • Agrawal S, Kango N (2019) Development and catalytic characterization of L-asparaginase nano-bioconjugates. Int J Biol Macromol 135:1142–1150

    Article  CAS  Google Scholar 

  • Agrawal S, Sharma I, Prajapati BP, Suryawanshi RK, Kango N (2018) Catalytic characteristics and application of L-asparaginase immobilized on aluminum oxide pellets. Int J Biol Macromol 114:504–511

    Article  CAS  Google Scholar 

  • Ahmadpour S, Hosseinimehr SJ (2018) PASylation as a powerful technology for improving the pharmacokinetic properties of biopharmaceuticals. Curr Drug Deliv 15(3):331–341

    Article  CAS  Google Scholar 

  • Aibani N, Khan TN, Callan B (2020) Liposome mimicking polymersomes; A comparative study of the merits of polymersomes in terms of formulation and stability. Int J Pharmac X 2:100040

    CAS  Google Scholar 

  • Al-Dulimi AG, Al-Saffar AZ, Sulaiman GM, Khalil KA, Khashan KS, Al-Shmgani HS, Ahmed EM (2020) Immobilization of L-asparaginase on gold nanoparticles for novel drug delivery approach as anti-cancer agent against human breast carcinoma cells. J Mater Res Technol 9(6):15394–15411

    Article  CAS  Google Scholar 

  • Alrumman SA, Mostafa YS, Al-izran KA et al (2019) Production and Anticancer Activity of an L-asparaginase from Bacillus licheniformis Isolated from the Red Sea, Saudi Arabia. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-40512-x

    Article  CAS  Google Scholar 

  • Ammon HL, Weber IT, Wlodawer A, Harrison RW, Gilliland GL, Murphy KC, Sjölin L, Roberts J (1988) Preliminary crystal structure of Acinetobacter glutaminasificans glutaminase-asparaginase. J Biol Chem 263(1):150–156

    Article  CAS  Google Scholar 

  • Amylon MD, Shuster J, Pullen J et al (1999) Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: A Pediatric Oncology Group study. Leukemia 13:335–342. https://doi.org/10.1038/sj.leu.2401310

    Article  CAS  Google Scholar 

  • Antipov AA, Sukhorukov GB, Möhwald H (2003) Influence of the ionic strength on the polyelectrolyte multilayers’ permeability. Langmuir 19(6):2444–2448

    Article  CAS  Google Scholar 

  • Apolinário AC, MagoÅ„ MS, Pessoa A Jr, Rangel-Yagui CDO (2018) Challenges for the self-assembly of poly (ethylene glycol)–poly (lactic acid)(PEG-PLA) into polymersomes: beyond the theoretical paradigms. Nano 8(6):373

    Google Scholar 

  • ARENS A, RAUENBUSCH E, IRION E, WAGNER O, BAUER K, KAUFMANN W (1970) Isolation and properties of L-asparaginases from Escherichia coli. Hoppe-Seyler´ s Zeitschrift für Physiologische Chemie 351(1):197–212

    Article  CAS  Google Scholar 

  • Ardalan N, Mirzaie S, Sepahi A, Khavari-Nejad RA (2018) Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies. Medical hypotheses 112:7–17

    Google Scholar 

  • Arjun JK, Aneesh B, Kavitha T, Hari Krishnan K (2016) Therapeutic L-asparaginase activity of bacteria isolated from marine sediments. Int J Pharmac Sci Drug Res 8(4):229–234

    CAS  Google Scholar 

  • Aslanian AM, Kilberg MS (2001) Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells. Biochem J 358(1):59–67

    Article  CAS  Google Scholar 

  • Asselin BL et al (1999) Prognostic significance of early response to a single dose of Asparaginase in childhood acute lymphoblastic. Leukemia 21(1):6–12

    CAS  Google Scholar 

  • Ates B, Ulu A, Köytepe S, Noma SAA, Kolat VS, Izgi T (2018) Magnetic-propelled Fe 3 O 4–chitosan carriers enhance L-asparaginase catalytic activity: a promising strategy for enzyme immobilization. RSC Adv 8(63):36063–36075

    Article  CAS  Google Scholar 

  • Avramis VI, Sencer S, Periclou AP, Sather H, Bostrom BC, Cohen LJ et al (2002) A randomized comparison of nativeEscherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 99(6):1986–1994

    Article  CAS  Google Scholar 

  • Bader RA, Wardwell PR (2014) Polysialic acid: overcoming the hurdles of drug delivery. Ther Deliv 5:235–237. https://doi.org/10.4155/tde.13.153

    Article  CAS  Google Scholar 

  • Badoei-Dalfard A (2015) Purification and characterization of L-asparaginase from Pseudomonas aeruginosa strain SN004: production optimization by statistical methods. Biocatal Agric Biotechnol 4:388–397. https://doi.org/10.1016/j.bcab.2015.06.007

    Article  Google Scholar 

  • Bahreini E, Aghaiypour K, Abbasalipourkabir R et al (2014) Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett 9:1–13. https://doi.org/10.1186/1556-276X-9-340

    Article  CAS  Google Scholar 

  • Bai Aswathanarayan J, Rai Vittal R, Muddegowda U (2018) Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells. Artif Cells Nanomed Biotechnol 46(7):1444–1451

    Article  CAS  Google Scholar 

  • Balasubramanian MN, Butterworth EA, Kilberg MS (2013) Asparagine synthetase: Regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 304(8):E789–E799. https://doi.org/10.1152/ajpendo.00015.2013

    Article  CAS  Google Scholar 

  • Banerji J (2015) Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 36:607–625. https://doi.org/10.3892/ijmm.2015.2285

    Article  CAS  Google Scholar 

  • Barenholz Y (2001) Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 6(1):66–77

    Article  CAS  Google Scholar 

  • Basha NS, Rekha R, Komala M, Ruby S (2009) Production of extracellular anti-leukaemic enzyme lasparaginase from marine actinomycetes by solidstate and submerged fermentation: purification and characterisation. Trop J Pharm Res 8(4)

    Google Scholar 

  • Battistel AP, da Rocha BS, dos Santos MT et al (2020) Allergic reactions to asparaginase: retrospective cohort study in pediatric patients with acute lymphoid leukemia. Hematol Transfus Cell Ther 43:9–14. https://doi.org/10.1016/j.htct.2019.10.007

    Article  Google Scholar 

  • Bergmann S, Lawler SE, Qu Y, Fadzen CM, Wolfe JM, Regan MS et al (2018) Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc 13(12):2827–2843

    Article  CAS  Google Scholar 

  • Bhargavi M, Jayamadhuri R (2016) Isolation and screening of marine bacteria producing anti-cancer enzyme L-asparaginase. Am J Mar Sci 4:1–3. https://doi.org/10.12691/marine-4-1-1

    Article  Google Scholar 

  • Birolli WG, Lima RN, Porto ALM (2019) Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front Microbiol 10:1453. https://doi.org/10.3389/fmicb.2019.01453

    Article  Google Scholar 

  • Blackman LD, Varlas S, Arno MC, Fayter A, Gibson MI, O’Reilly RK (2017) Permeable protein-loaded polymersome cascade nanoreactors by polymerization-induced self-assembly. ACS Macro Lett 6(11):1263–1267

    Article  CAS  Google Scholar 

  • Blackman LD, Varlas S, Arno MC, Houston ZH, Fletcher NL, Thurecht KJ et al (2018) Confinement of therapeutic enzymes in selectively permeable polymer vesicles by polymerization-induced self-assembly (PISA) reduces antibody binding and proteolytic susceptibility. ACS Central Sci 4(6):718–723

    Article  CAS  Google Scholar 

  • Bonthron DT (1990) L-asparaginase II of Escherichia coli K-12: cloning, mapping and sequencing of the ansB gene. Gene 91:101–105. https://doi.org/10.1016/0378-1119(90)90168-Q

    Article  CAS  Google Scholar 

  • Broome JD (1963) Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects: I. properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. The Journal of experimental medicine 118(1):99

    Google Scholar 

  • Broome JD (1965) Antilymphoma activity of L-asparaginase in vivo : clearance rates of enzyme prepara- tions from guinea pig serum and yeast in relation to their effect on tumor growth 1. J Natl Cancer Inst 35:967–974

    CAS  Google Scholar 

  • Bueno CZ, Apolinário AC, Duro-Castano A, Poma A, Pessoa A Jr, Rangel-Yagui CO, Battaglia G (2020) L-asparaginase encapsulation into asymmetric permeable polymersomes. ACS Macro Lett 9:1471–1477

    Article  CAS  Google Scholar 

  • Cammack KA, Marlborough DI, Miller DS (1972) Physical properties and subunit structure of L-asparaginase isolated from Erwinia carotovora. Biochem J 126(2):361–379

    Article  CAS  Google Scholar 

  • Cao Z, Zhang L, Liang K, Cheong S, Boyer C, Gooding JJ et al (2018) Biodegradable 2D Fe–Al hydroxide for nanocatalytic tumor-dynamic therapy with tumor specificity. Adv Sci 5(11):1801155

    Article  CAS  Google Scholar 

  • Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S et al (2014) The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 123(23):3596–3606

    Article  CAS  Google Scholar 

  • Chan WK, Horvath TD, Tan L, Link T, Harutyunyan KG, Pontikos MA et al (2019) Glutaminase activity of L-asparaginase contributes to durable preclinical activity against acute lymphoblastic leukemia. Mol Cancer Ther 18(9):1587–1592

    Article  CAS  Google Scholar 

  • Cheng TH, Ismail N, Kamaruding N et al (2020) Industrial enzymes-producing marine bacteria from marine resources. Biotechnol Rep 27:e00482. https://doi.org/10.1016/j.btre.2020.e00482

    Article  CAS  Google Scholar 

  • Chien WW, Le Beux C, Rachinel N et al (2015) Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci Rep 5:19–21. https://doi.org/10.1038/srep08068

    Article  CAS  Google Scholar 

  • Choi YJ, Park SJ, Park YS, Park HS, Yang KM, Heo K (2018) EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS One 13(1):e0190638

    Article  CAS  Google Scholar 

  • Clementi A (1922) La désamidation enzymatique de l’asparagine chez les différentes espéces animales et la signification physio logique de sa presence dans l’organisme. Arch Int Physiol 19(4):369–398

    CAS  Google Scholar 

  • Cristóvão RO, Almeida MR, Barros MA, Nunes JC, Boaventura RA, Loureiro JM et al (2020) Development and characterization of a novel L-asparaginase/MWCNT nanobioconjugate. RSC Adv 10(52):31205–31213

    Article  Google Scholar 

  • Darvishi F, Faraji N, Shamsi F (2019) Production and structural modeling of a novel asparaginase in Yarrowia lipolytica. Int J Biol Macromol 125:955–961. https://doi.org/10.1016/j.ijbiomac.2018.12.162

    Article  CAS  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: Importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • Dawidczyk CM, Russell LM, Searson PC (2014) Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2:69

    Article  CAS  Google Scholar 

  • Dawidczyk CM, Russell LM, Searson PC (2015) Recommendations for benchmarking preclinical studies of nanomedicines. Cancer Res 75(19):4016–4020

    Article  CAS  Google Scholar 

  • de Almeida Pachioni-Vasconcelos J, Lopes AM, Apolinário AC, Valenzuela-Oses JK, Costa JSR, de Oliveira Nascimento L et al (2016) Nanostructures for protein drug delivery. Biomater Sci 4(2):205–218

    Article  Google Scholar 

  • de Brito AEM, Pessoa A Jr, Converti A, de Oliveira Rangel-Yagui C, da Silva JA, Apolinário AC (2019) Poly (lactic-co-glycolic acid) nanospheres allow for high L-asparaginase encapsulation yield and activity. Mater Sci Eng C 98:524–534

    Article  CAS  Google Scholar 

  • Dellinger CT, Miale TD (1976) Comparison of anaphylactic reactions to asparaginase derived from Escherichia coli and from Erwinia culturs. Cancer 38(4):1843–1846

    Google Scholar 

  • Demirgöz D, Pangburn TO, Davis KP, Lee S, Bates FS, Kokkoli E (2009) PR_b-targeted delivery of tumor necrosis factor-α by polymersomes for the treatment of prostate cancer. Soft Matter 5(10):2011–2019

    Article  CAS  Google Scholar 

  • Dhevagi P, Poorani E (2006) Isolation and characterization of L-asparaginase from marine actinomycetes. Indian J Biotechnol 5:514–520

    CAS  Google Scholar 

  • Do TT, Do TP, Nguyen TN et al (2019) Nanoliposomal L-asparaginase and its antitumor activities in lewis lung carcinoma tumor-induced BALB/c mice. Adv Mater Sci Eng 2019. https://doi.org/10.1155/2019/3534807

  • Dolowy WC, Henson D, Cornet J, Sellin H (1966) Toxic and antineoplastic effects of L-asparaginase: study of mice with lymphoma and normal monkeys and report on a child with leukemia. Cancer 19(12):1813–1819

    Article  CAS  Google Scholar 

  • Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D et al (2020) GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv Mater 32(42):2002439

    Article  CAS  Google Scholar 

  • Dos Santos C, Hamadat S, Le Saux K, Newton C, Mazouni M, Zargarian L et al (2017) Studies of the antitumor mechanism of action of dermaseptin B2, a multifunctional cationic antimicrobial peptide, reveal a partial implication of cell surface glycosaminoglycans. PLoS One 12(8):e0182926

    Article  CAS  Google Scholar 

  • Duval M, Suciu S, Ferster A et al (2002) Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer - Children’s Leukemia Group phase 3 trial. Blood 99:2734–2739. https://doi.org/10.1182/blood.V99.8.2734

    Article  CAS  Google Scholar 

  • Einsfeldt K, Baptista IC, Pereira JCCV, Costa-Amaral IC, Costa ESD, Ribeiro MCM, ... Almeida RV (2016) Recombinant L-asparaginase from Zymomonas mobilis: a potential new antileukemic agent produced in Escherichia coli. PloS one 11(6):e0156692

    Google Scholar 

  • Ekladious I, Colson YL, Grinstaff MW (2019) Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 18:273–294. https://doi.org/10.1038/s41573-018-0005-0

    Article  CAS  Google Scholar 

  • El-Sharkawy AS, Farag AM, Embaby AM et al (2016) Cloning, expression and characterization of aeruginosa EGYII L-Asparaginase from Pseudomonas aeruginosa strain EGYII DSM 101801 in E. coli BL21(DE3) pLysS. J Mol Catal B Enzym 132:16–23. https://doi.org/10.1016/j.molcatb.2016.06.011

    Article  CAS  Google Scholar 

  • Epp O, Steigemann W, Formanek H, Huber R (1971) Crystallographic evidence for the tetrameric subunit structure of L-asparaginase from Escherichia coli. Eur J Biochem 20:432–437

    Article  CAS  Google Scholar 

  • Evans WE (1982) Anaphylacfoid Reactions to Escherichia coli and Erwinia Asparaginase in children with leukemia and lymphoma. Am Cancer Soc 49:1378–1383

    CAS  Google Scholar 

  • Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y et al (2018) In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 9(1):1–11

    Article  CAS  Google Scholar 

  • Farahat MG, Amr D, Galal A (2020) Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. Int J Biol Macromol 143:685–695. https://doi.org/10.1016/j.ijbiomac.2019.10.258

    Article  CAS  Google Scholar 

  • Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S et al (2018) Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 36(4):968–985

    Article  CAS  Google Scholar 

  • Fu CH, Sakamoto KM (2007) PEG-asparaginase. Expert opinion on pharmacotherapy 8(12):1977–1984

    Google Scholar 

  • Gao S, Lin H, Zhang H, Yao H, Chen Y, Shi J (2019) Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv Sci 6(3):1801733

    Article  CAS  Google Scholar 

  • Gebauer M, Skerra A (2018) Prospects of PASylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg Med Chem 26(10):2882–2887

    Article  CAS  Google Scholar 

  • Ghosh S, Chaganti SR, Prakasham RS (2012) Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme L-asparaginase. J Mol Catal B Enzym 74:132–137. https://doi.org/10.1016/j.molcatb.2011.09.009

    Article  CAS  Google Scholar 

  • Gongora-Benitez M, Tulla-Puche J, Albericio F (2014) Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev 114(2):901–926

    Article  CAS  Google Scholar 

  • Guarecuco R, Williams RT, Baudrier L, La K, Passarelli MC, Ekizoglu N et al (2020) Dietary thiamine influences L-asparaginase sensitivity in a subset of leukemia cells. Sci Adv 6(41):eabc7120

    Article  CAS  Google Scholar 

  • Haley EE, Fischer GA, Welch AD (1961) The requirement for L-asparagine of mouse leukemia cells L5178Y in culture. Cancer Res 21(4):532–536

    CAS  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2006) Pharmacokinetic consequences of pegylation. Drug delivery 13(6):399–409

    Google Scholar 

  • He H, Ye J, Wang Y et al (2014) Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Control Release 176:123–132. https://doi.org/10.1016/j.jconrel.2013.12.019

    Article  CAS  Google Scholar 

  • He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W (2019) Adapting liposomes for oral drug delivery. Acta Pharm Sin B 9(1):36–48

    Article  Google Scholar 

  • Hermanova I, Zaliova M, Trka J, Starkova J (2012) Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase. Exp Hematol 40(8):657–665

    Article  CAS  Google Scholar 

  • Hijiya N, Van Der Sluis IM (2016) Asparaginase-Associated toxicity in children with acute lymphoblastic leukemia. Leuk Lymphoma 57:748–757. https://doi.org/10.3109/10428194.2015.1101098

    Article  CAS  Google Scholar 

  • Hill JM, Roberts J, Loeb E, Khan A, MacLellan A, Hill RW (1967) L-asparaginase therapy for leukemia and other malignant neoplasms: remission in human leukemia. JAMA 202(9):882–888

    Article  CAS  Google Scholar 

  • Hlozkova K, Pecinova A, Alquezar-Artieda N, Pajuelo-Reguera D, Simcikova M, Hovorkova L et al (2020) Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase. BMC Cancer 20:1–13

    Article  CAS  Google Scholar 

  • Ho PP, Milikin EB, Bobbitt JL, Grinnan EL, Burck PJ, Frank BH et al (1970) Crystalline L-asparaginase from Escherichia coli B I. Purification and chemical characterization. J Biol Chem 245(14):3708–3715

    Article  CAS  Google Scholar 

  • Horowitz B, Madras BK, Meister A, Old LJ, Boyes EA, Stockert E (1968) Asparagine synthetase activity of mouse leukemias. Science 160(3827):533–535. https://doi.org/10.1126/science.160.3827.533

    Article  CAS  Google Scholar 

  • Huang L, Liu Y, Sun Y, Yan Q, Jiang Z (2014) Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Applied and environmental microbiology 80(5):1561–1569

    Google Scholar 

  • Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412

    Article  CAS  Google Scholar 

  • Huo M, Wang L, Wang Y, Chen Y, Shi J (2019) Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 13(2):2643–2653

    CAS  Google Scholar 

  • Irion ECKART, Voigt WH (1970) Electron microscopy of L-asparaginase from Escherichia coli. Hoppe Seylers Z Physiol Chem 351(9):1154–1156

    CAS  Google Scholar 

  • Izadpanah Qeshmi F, Javadpour S, Malekzadeh K et al (2014) Persian Gulf is a bioresource of potent L-asparaginase producing bacteria: Isolation & molecular differentiating. Int J Environ Res 8:813–818

    Google Scholar 

  • Izadpanah Qeshmi F, Rahimzadeh M, Javadpour S, Poodat M (2015) Intracellular L-asparaginase from Bacillus sp. PG02: purification, biochemical characterization and evaluation of optimum pH and temperature. Am J Biochem Biotechnol

    Google Scholar 

  • Izadpanah F, Homaei A, Fernandes P, Javadpour S (2018) Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 208:99–112. https://doi.org/10.1016/j.micres.2018.01.011

    Article  CAS  Google Scholar 

  • Jackman JA, Costa VV, Park S, Real ALC, Park JH, Cardozo PL et al (2018) Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nat Mater 17(11):971–977

    Article  CAS  Google Scholar 

  • Jafari B, Pourseif MM, Barar J, Rafi MA, Omidi Y (2019) Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv 16(6):583–605

    Article  CAS  Google Scholar 

  • Jeong WJ, Bu J, Han Y, Drelich AJ, Nair A, Král P, Hong S (2020) Nanoparticle conjugation stabilizes and multimerizes β-Hairpin peptides to effectively target PD-1/PD-L1 β-sheet-rich interfaces. J Am Chem Soc 142(4):1832–1837

    Article  CAS  Google Scholar 

  • Jiang W, Zhou Y, Yan D (2015) Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem Soc Rev 44(12):3874–3889

    Article  CAS  Google Scholar 

  • Kamala K, Sivaperumal P (2017) Biomedical applications of enzymes from marine actinobacteria. In: Advances in food and nutrition research, vol 80. Academic Press, pp 107–123

    Google Scholar 

  • Kaneda Y, Tsutsumi Y, Yoshioka Y, Kamada H, Yamamoto Y, Kodaira H et al (2004) The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials 25(16):3259–3266

    Article  CAS  Google Scholar 

  • Keck CM, Müller RH (2013) Nanotoxicological classification system (NCS)–a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84(3):445–448

    Article  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2008) Marine metagenomics: Strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Factories 7:1–8. https://doi.org/10.1186/1475-2859-7-27

    Article  CAS  Google Scholar 

  • Khamessi O, Mabrouk HB, Othman H, ElFessi-Magouri R, De Waard M, Hafedh M et al (2018) RK, the first scorpion peptide with dual disintegrin activity on α1β1 and αvβ3 integrins. Int J Biol Macromol 120:1777–1788

    Article  CAS  Google Scholar 

  • Khodaverdi E, Tayarani-Najaran Z, Minbashi E, Alibolandi M, Hosseini J, Sepahi S et al (2019) Docetaxel-loaded mixed micelles and polymersomes composed of poly (caprolactone)-poly (ethylene glycol)(PEG-PCL) and poly (lactic acid)-poly (ethylene glycol)(PEG-PLA): preparation and in-vitro characterization. Iran J Pharmac Res 18(1):142

    CAS  Google Scholar 

  • Kidd JG (1953) Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med 98(6):565–582

    Article  CAS  Google Scholar 

  • Killander D, Dohlwitz A, Engstedt L, Franzen S, Gahrton G, Gullbring B et al (1976) Hypersensitive reactions and antibody formation during L-asparaginase treatment of children and adults with acute leukemia. Cancer 37(1):220–228

    Article  CAS  Google Scholar 

  • Kim IW, Lee JH, Kwon YN, Yun EY, Nam SH, Ahn MY et al (2013) Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis. Int J Oncol 43(2):622–628

    Article  CAS  Google Scholar 

  • Kiriyama Y, Kubota M, Takimoto T, Kitoh T, Tanizawa A, Akiyama Y, Mikawa H (1989) Biochemical characterization of U937 cells resistant to L-asparaginase: the role of asparagine synthetase. Leukemia 3(4):294–297

    CAS  Google Scholar 

  • Kotzia GA, Lappa K, Labrou NE (2007) Tailoring structure–function properties of L-asparaginase: engineering resistance to trypsin cleavage. Biochem J 404(2):337–343

    Article  CAS  Google Scholar 

  • Kozielski KL, Rui Y, Green JJ (2016) Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv 13(10):1475–1487

    Article  CAS  Google Scholar 

  • Krishna KK, Bhumika V, Thomas M et al (2013) Oceanospirillum nioense sp. nov., a marine bacterium isolated from sediment sample of Palk bay, India. Antonie Van Leeuwenhoek 103:1015–1021. https://doi.org/10.1007/s10482-013-9881-9

    Article  Google Scholar 

  • Lang S (1904) Uber desamidierung im Tierkorper. Beitr Chem Physiol Pathol 5:321–345

    CAS  Google Scholar 

  • Lauster D, Glanz M, Bardua M, Ludwig K, Hellmund M, Hoffmann U et al (2017) Multivalent peptide–nanoparticle conjugates for influenza-virus inhibition. Angew Chem Int Ed 56(21):5931–5936

    Article  CAS  Google Scholar 

  • Lazarus H, McCoy TA, Farber S et al (1969) Nutritional requirements of human leukemic cells. Asparagine requirements and the effect of L-asparaginase. Exp Cell Res 57:134–138. https://doi.org/10.1016/0014-4827(69)90377-2

    Article  CAS  Google Scholar 

  • Lee SJ, Lee Y, Park GH, Umasuthan N, Heo SJ, De Zoysa M et al (2016) A newly identified glutaminase-free L-asparaginase (L-ASPG86) from the marine bacterium Mesoflavibacter zeaxanthinifaciens. J Microbiol Biotechnol 26(6):1115–1123

    Google Scholar 

  • Lee JK, Kang SM, Wang X et al (2019) HAP1 loss confers L-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway. Blood 133:2222–2232. https://doi.org/10.1182/blood-2018-12-890236

    Article  CAS  Google Scholar 

  • Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, Therien MJ, Greene MI et al (2008) Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods 46(1):25–32

    Article  CAS  Google Scholar 

  • Li S, Byrne B, Welsh J, Palmer AF (2007) Self-assembled poly (butadiene)-b-poly (ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol Prog 23(1):278–285

    Google Scholar 

  • Lin T, Zhao X, Zhao S, Yu H, Cao W, Chen W et al (2018) O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 8(4):990

    Article  CAS  Google Scholar 

  • Liscano Y, Oñate-Garzón J, Delgado JP (2020) Peptides with dual antimicrobial–anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 25(18):4245

    Article  CAS  Google Scholar 

  • Liu X, Wu F, Ji Y, Yin L (2018) Recent advances in anti-cancer protein/peptide delivery. Bioconjug Chem 30(2):305–324

    Google Scholar 

  • Liu WJ, Wang H, Peng XW, Wang WD, Liu NW, Wang Y, Lu Y (2018) Asparagine synthetase expression is associated with the sensitivity to asparaginase in extranodal natural killer/T-cell lymphoma in vivo and in vitro. Onco Targets Ther 11:6605

    Google Scholar 

  • Lomelino CL, Andring JT, McKenna R, Kilberg MS (2017) Asparagine synthetase: function, structure, and role in disease. J Biol Chem 292:19952–19958. https://doi.org/10.1074/jbc.R117.819060

    Article  CAS  Google Scholar 

  • Louzao I, van Hest JC (2013) Permeability effects on the efficiency of antioxidant nanoreactors. Biomacromolecules 14(7):2364–2372

    Article  CAS  Google Scholar 

  • Luk BT, Fang RH, Hu CMJ, Copp JA, Thamphiwatana S, Dehaini D et al (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004

    Article  CAS  Google Scholar 

  • Maddela NR, Chakraborty S, Prasad R (2021) Nanotechnology for advances in medical microbiology. Springer Singapore (ISBN 978-981-15-9915-6). https://www.springer.com/gp/book/9789811599156

  • Maita T, Matsuda G (1980) The primary structure of L-asparaginase from Escherichia coli. Hoppe-Seyler´ s Zeitschrift für Physiologische Chemie 361(1):105–118

    Article  CAS  Google Scholar 

  • Maita T, Morokuma K, Matsuda G (1974) Amino acid sequence of L-asparaginase from Escherichia coli. J Biochem 76(6):1351–1354

    Article  CAS  Google Scholar 

  • Mashburn LT, Wriston JC (1964) Tumor inhibitory effect of L-asparaginase from Escherichia coli. Arch Biochem Biophys 105:450–452

    Article  CAS  Google Scholar 

  • Matsueda S, Itoh K, Shichijo S (2018) Antitumor activity of antibody against cytotoxic T lymphocyte epitope peptide of lymphocyte-specific protein tyrosine kinase. Cancer Sci 109(3):611–617

    Article  CAS  Google Scholar 

  • Mazloum-Ravasan S, Madadi E, Fathi Z et al (2020) The effect of Yarrowia lipolytica L-asparaginase on apoptosis induction and inhibition of growth in Burkitt’s lymphoma Raji and acute lymphoblastic leukemia MOLT-4 cells. Int J Biol Macromol 146:193–201. https://doi.org/10.1016/j.ijbiomac.2019.12.156

    Article  CAS  Google Scholar 

  • Meena B, Anburajan L, Vinithkumar NV et al (2016) Molecular expression of L-asparaginase gene from Nocardiopsis alba NIOT-VKMA08 in Escherichia coli: a prospective recombinant enzyme for leukaemia chemotherapy. Gene 590:220–226. https://doi.org/10.1016/j.gene.2016.05.003

    Article  CAS  Google Scholar 

  • Meneguetti GP, Santos JHPM, Obreque KMT, Barbosa CMV, Monteiro G, Farsky SHP et al (2019) Novel site-specific PEGylated L-asparaginase. PLoS One 14(2):e0211951

    Article  CAS  Google Scholar 

  • Mikolajczak DJ, Koksch B (2019) Peptide–gold nanoparticle conjugates as artificial carbonic anhydrase mimics. Catalysts 9(11):903

    Article  CAS  Google Scholar 

  • Miller HK, Balis ME (1969) Glutaminase activity of L-asparagine amidohydrolase. Biochem Pharmacol 18(9):2225–2232

    Article  CAS  Google Scholar 

  • Mostafa Y, Alrumman S, Alamri S et al (2019) Enhanced production of glutaminase-free L-asparaginase by marine Bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electron J Biotechnol 42:6–15. https://doi.org/10.1016/j.ejbt.2019.10.001

    Article  CAS  Google Scholar 

  • Nayak S, Porob S, Fernandes A, Meena RM, Ramaiah N (2014) PCR detection of ansA from marine bacteria and its sequence characteristics from Bacillus tequilensis NIOS4. J Basic Microbiol 54(2):162–168

    Article  CAS  Google Scholar 

  • Neuman RE, Mccoy TA (1956) Dual requirement of Walker carcinosarcoma 256 in vitro for asparagine and glutamine. Science (80- ) 124:124–125. https://doi.org/10.1126/science.124.3212.124

    Article  CAS  Google Scholar 

  • Nguyen TH, Nguyen VD (2017) Characterization and applications of marine microbial enzymes in biotechnology and probiotics for animal health. In Advances in food and nutrition research (Vol. 80, pp. 37–74). Academic Press

    Google Scholar 

  • North ACT, Wade HE, Cammack KA (1969) Physicochemical studies of L-asparaginase from Erwinia carotovora. Nature (London) 224:594–595

    Article  CAS  Google Scholar 

  • Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA (2011) Rational engineering of Lasparaginase reveals importance of dual activity for cancer cell toxicity. Blood, The Journal of the American Society of Hematology 117(5):1614–1621

    Google Scholar 

  • Old LJ, Boyse EA, Campbell HA, Brodey RS, Fidler J, Teller JD (1967) Treatment of lymphosarcoma in the dog with L-asparaginase. Cancer 20(7):1066–1070

    Article  CAS  Google Scholar 

  • Pachioni-Vasconcelos JDA, Apolinário AC, Lopes AM, Pessoa A Jr, Barbosa LRS, Rangel-Yagui CDO (2020) Compartmentalization of therapeutic proteins into semi-crystalline PEG-PCL polymersomes. Soft Mater 19(2):222–230

    Article  Google Scholar 

  • Pal I, Brahmkhatri VP, Bera S, Bhattacharyya D, Quirishi Y, Bhunia A, Atreya HS (2016) Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interface Sci 483:385–393

    Article  CAS  Google Scholar 

  • Paliwal R, Babu RJ, Palakurthi S (2014) Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15(6):1527–1534

    Article  CAS  Google Scholar 

  • Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M et al (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS One 11(3):e0152074

    Article  CAS  Google Scholar 

  • Panosyan EH, Seibel NL, Martin-Aragon S, Gaynon PS, Avramis IA, Sather H, ... Avramis VI (2004) Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children’s Cancer Group Study CCG-1961. Journal of pediatric hematology/oncology 26(4):217–226

    Google Scholar 

  • Parmentier JH, Maggi M, Tarasco E et al (2015) Glutaminase activity determines cytotoxicity of L-asparaginases on most leukemia cell lines. Leuk Res 39:757–762. https://doi.org/10.1016/j.leukres.2015.04.008

    Article  CAS  Google Scholar 

  • Patel N, Krishnan S, Offman MN, Krol M, Moss CX, Leighton C et al (2009) A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug L-asparaginase. J Clin Invest 119(7):1964–1973

    CAS  Google Scholar 

  • Peng X, Zhou C, Hou X, Liu Y, Wang Z, Peng X et al (2018) Molecular characterization and bioactivity evaluation of two novel bombinin peptides from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Amino Acids 50(2):241–253

    Article  CAS  Google Scholar 

  • Petersen MA, Hillmyer MA, Kokkoli E (2013) Bioresorbable polymersomes for targeted delivery of cisplatin. Bioconjug Chem 24(4):533–543

    Article  CAS  Google Scholar 

  • Peterson RG, Handschumacher RE, Mitchell MS (1971) Immunological responses to L-asparaginase. J Clin Investig 50(5):1080–1090

    Article  CAS  Google Scholar 

  • Phan H, Taresco V, Penelle J, Couturaud B (2020) Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater Sci

    Google Scholar 

  • Pieters R, Hunger SP, Boos J et al (2011) L-asparaginase treatment in acute lymphoblastic leukemia. Cancer 117:238–249. https://doi.org/10.1002/cncr.25489

    Article  CAS  Google Scholar 

  • Pola M, Rajulapati SB, Potla Durthi C et al (2018) In silico modelling and molecular dynamics simulation studies on L-asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum. Enzym Microb Technol 117:32–40. https://doi.org/10.1016/j.enzmictec.2018.06.005

    Article  CAS  Google Scholar 

  • Pradhan B, Dash SK, Sahoo S (2013) Screening and characterization of extracelluar L-asparaginase producing Bacillus subtilis strain hswx88, isolated from Taptapani hotspring of Odisha, India. Asian Pac J Trop Biomed 3:936–941. https://doi.org/10.1016/S2221-1691(13)60182-3

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R (2019a) Microbial nanobionics: Basic research and applications. Springer International Publishing (ISBN 978-3-030-16534-5). https://www.springer.com/gp/book/9783030165338

  • Prasad R (2019b) Microbial nanobionics: state of art. Springer International Publishing (ISBN 978-3-030-16383-9). https://www.springer.com/gp/book/9783030163822

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0). https://www.springer.com/978-3-319-99570-0

  • Prasad R, Siddhardha B, Dyavaiah M (2020) Nanostructures for antimicrobial and antibiofilm applications. Springer International Publishing (ISBN 978-3-030-40336-2). https://www.springer.com/gp/book/9783030403362

  • Prihanto AA, Wakayama M (2016) Marine microorganism: an underexplored source of L-asparaginase. Adv Food Nutrit Res 79:1–25

    Article  CAS  Google Scholar 

  • Qian X, Zhang J, Gu Z, Chen Y (2019) Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 211:1–13

    Article  CAS  Google Scholar 

  • Rahimzadeh M, Poodat M, Javadpour S, Qeshmi FI, Shamsipour F (2016) Purification, characterization and comparison between two new L-asparaginases from Bacillus PG03 and Bacillus PG04. Open Biochem J 10:35

    Article  CAS  Google Scholar 

  • Ramirez-Paz J, Saxena M, Delinois LJ, Joaquín-Ovalle FM, Lin S, Chen Z et al (2018) Site-specific PEGylation crosslinking of L-asparaginase subunits to improve its therapeutic efficiency. BioRxiv 317040

    Google Scholar 

  • Ramsey JD, Flynn NH (2015) Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther 154:78–86

    Article  CAS  Google Scholar 

  • Ranjitha VR, Muddegowda U, Ravishankar Rai V (2019) Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev Ind Pharm 45(9):1496–1505

    Article  CAS  Google Scholar 

  • Rao L, Tian R, Chen X (2020) Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano 14(3):2569–2574

    Article  CAS  Google Scholar 

  • Ravuri J, Kumari K (2013) In vitro anticancer activity of marine bacteria isolated from Andhra Pradesh and Tamil Nadu coastal regions. Int J Chem Environ Biol Sci 1:3–5

    Google Scholar 

  • Richards NG, Kilberg MS (2006) Asparagine synthetase chemotherapy. Annu Rev Biochem 75:629–654. https://doi.org/10.1146/annurev.biochem.75.103004.142520. PMID: 16756505; PMCID: PMC3587692

    Article  CAS  Google Scholar 

  • Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K (2018) Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 47(23):8572–8610

    Article  CAS  Google Scholar 

  • Roberts J, Prager MD, Bachynsky N (1966) The antitumor activity of Escherichia coli L-asparaginase. Cancer Res 26(10):2213–2217

    CAS  Google Scholar 

  • Rossi L, Pierigè F, Bregalda A, Magnani M (2020) Preclinical developments of enzyme-loaded red blood cells. Expert Opin Drug Deliv

    Google Scholar 

  • Sabu C, Rejo C, Kotta S, Pramod K (2018) Bioinspired and biomimetic systems for advanced drug and gene delivery. J Control Release 287:142–155

    Article  CAS  Google Scholar 

  • Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, ... Ataya F (2018) Molecular cloning, structural modeling and production of recombinant Aspergillus terreus L. asparaginase in Escherichia coli. International journal of biological macromolecules 106:1041–1051

    Google Scholar 

  • Saeed H, Hemida A, El-Nikhely N et al (2020) Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. Int J Biol Macromol 156:812–828. https://doi.org/10.1016/j.ijbiomac.2020.04.080

    Article  CAS  Google Scholar 

  • Saglam N, Korkusuz, F, Prasad R (2021) Nanotechnology applications in health and environmental sciences. Springer International Publishing (ISBN: 978-3-030-64410-9). https://www.springer.com/gp/book/9783030644093

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased nanotechnology for green applications. Springer International Publishing (ISBN 978-3-030-61985-5). https://www.springer.com/gp/book/9783030619848

  • Schwarzer TS, Klermund L, Wang G, Castiglione K (2018) Membrane functionalization of polymersomes: alleviating mass transport limitations by integrating multiple selective membrane transporters for the diffusion of chemically diverse molecules. Nanotechnology 29(44):44LT01

    Article  CAS  Google Scholar 

  • Shaik M, Sankar GG, Iswarya M, Rajitha P (2017) Isolation and characterization of bioactive metabolites producing marine Streptomyces parvulus strain sankarensis-A10. J Gen Eng Biotechnol 15(1):87–94

    Article  Google Scholar 

  • Shakambari G, Birendranarayan AK, Angelaa Lincy MJ et al (2016) Hemocompatible glutaminase free L-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression. RSC Adv 6:25943–25951. https://doi.org/10.1039/c6ra00727a

    Article  CAS  Google Scholar 

  • Shi R, Liu Y, Mu Q, Jiang Z, Yang S (2017) Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. Int J Biol Macromol 96:93–99

    Article  CAS  Google Scholar 

  • Shrivastava A, Khan AA, Khurshid M et al (2016) Recent developments in L-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol 100:1–10. https://doi.org/10.1016/j.critrevonc.2015.01.002

    Article  Google Scholar 

  • Singh M, Hassan N, Verma D, Thakur P, Panda BP, Panda AK et al (2020) Design of expert guided investigation of native L-asparaginase encapsulated long-acting cross-linker-free poly (lactic-co-glycolic) acid nanoformulation in an Ehrlich ascites tumor model. Saudi Pharmac J 28(6):719–728

    Article  CAS  Google Scholar 

  • Soares AL, Guimaraes GM, Polakiewicz B, de Moraes Pitombo RN, Abrahão-Neto J (2002) Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase. Int J Pharm 237(1–2):163–170

    Article  CAS  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini- Reviews in Medicinal Chemistry 21(2): 245–265

    Google Scholar 

  • Stams WA, den Boer ML, Beverloo HB, Meijerink JP, Stigter RL, van Wering ER et al (2003) Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t (12; 21)+ pediatric ALL. Blood J Am Soc Hematol 101(7):2743–2747

    CAS  Google Scholar 

  • Stecher AL, De Deus PM, Polikarpov I, Abrahao-Neto J (1999) Stability of L-asparaginase: an enzyme used in leukemia treatment. Pharm Acta Helv 74(1):1–9

    Article  CAS  Google Scholar 

  • Su N, Pan YX, Zhou M, Harvey RC, Hunger SP, Kilberg MS (2008) Correlation between asparaginase sensitivity and asparagine synthetase protein content, but not mRNA, in acute lymphoblastic leukemia cell lines. Pediatric blood & cancer 50(2):274–279

    Google Scholar 

  • Sun J, Nagel R, Zaal EA, Ugalde AP, Han R, Proost N, ... Agami R (2019) SLC 1A3 contributes to Lasparaginase resistance in solid tumors. The EMBO journal 38(21):e102147

    Google Scholar 

  • Sundaramoorthi C, Rajakumari R, Dharamsi ABHAY, Vengadeshprabhu K (2012) Production and immobilization of L-asparaginase from marine source. Int J Pharm Pharm Sci 4:229–232

    CAS  Google Scholar 

  • Sutrisno L, Hu Y, Hou Y, Cai K, Li M, Luo Z (2020) Progress of iron-based nanozymes for antitumor therapy. Front Chem 8

    Google Scholar 

  • Swain AL, Jaskolski M, Housset D et al (1993) Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proc Natl Acad Sci U S A 90:1474–1478. https://doi.org/10.1073/pnas.90.4.1474

    Article  CAS  Google Scholar 

  • Taleghani AS, Ebrahimnejad P, Heidarinasab A, Akbarzadeh A (2019) Sugar-conjugated dendritic mesoporous silica nanoparticles as pH-responsive nanocarriers for tumor targeting and controlled release of deferasirox. Mater Sci Eng C 98:358–368

    Article  CAS  Google Scholar 

  • Tanner P, Onaca O, Balasubramanian V, Meier W, Palivan CG (2011) Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress. Chem Eur J 17(16):4552–4560

    Article  CAS  Google Scholar 

  • Thi TTH, Pilkington EH, Nguyen DH et al (2020) The importance of Poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 12(2):298. https://doi.org/10.3390/polym12020298

    Article  CAS  Google Scholar 

  • Tong WH, van der Sluis IM, Alleman CJM et al (2013) Cost-analysis of treatment of childhood acute lymphoblastic leukemia with asparaginase preparations: The impact of expensive chemotherapy. Haematologica 98:753–759. https://doi.org/10.3324/haematol.2012.073510

    Article  Google Scholar 

  • Tsuchiya N, Hosono A, Yoshikawa T, Shoda K, Nosaka K, Shimomura M et al (2018) Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. Onco Targets Ther 7(1):e1377872

    Google Scholar 

  • Ueno T, Ohtawa K, Mitsui K et al (1997) Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia 11:1858–1861. https://doi.org/10.1038/sj.leu.2400834

    Article  CAS  Google Scholar 

  • Ulu A, Ates B (2017) Immobilization of l -asparaginase on carrier materials: a comprehensive review. Bioconjug Chem 28:1598–1610. https://doi.org/10.1021/acs.bioconjchem.7b00217

    Article  CAS  Google Scholar 

  • Ulu A, Koytepe S, Ates B (2016) Design of starch functionalized biodegradable P (MAA-co-MMA) as carrier matrix for l-asparaginase immobilization. Carbohydrate polymers 153:559–572

    Google Scholar 

  • Ulu A, Noma SAA, Koytepe S, Ates B (2018) Magnetic Fe3O4@ MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient L-asparaginase immobilization. Artif Cells Nanomed Biotechnol 46(sup2):1035–1045

    Article  CAS  Google Scholar 

  • Upadhyay KK, Mishra AK, Chuttani K, Kaul A, Schatz C, Le Meins JF et al (2012) The in vivo behavior and antitumor activity of doxorubicin-loaded poly (γ-benzyl l-glutamate)-block-hyaluronan polymersomes in Ehrlich ascites tumor-bearing BalB/c mice. Nanomedicine 8(1):71–80

    Article  CAS  Google Scholar 

  • Vala AK, Sachaniya B, Dudhagara D et al (2018) International Journal of Biological Macromolecules Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46. https://doi.org/10.1016/j.ijbiomac.2017.11.114

    Article  CAS  Google Scholar 

  • van Oppen LM, Abdelmohsen LK, van Emst-de Vries SE, Welzen PL, Wilson DA, Smeitink JA et al (2018) Biodegradable synthetic organelles demonstrate ROS shielding in human-complex-I-deficient fibroblasts. ACS Central Sci 4(7):917–928

    Article  CAS  Google Scholar 

  • Varlas S, Blackman LD, Findlay HE, Reading E, Booth PJ, Gibson MI, O’Reilly RK (2018) Photoinitiated polymerization-induced self-assembly in the presence of surfactants enables membrane protein incorporation into vesicles. Macromolecules 51(16):6190–6201

    Article  CAS  Google Scholar 

  • Varlas S, Foster JC, Georgiou PG, Keogh R, Husband JT, Williams DS, O’Reilly RK (2019) Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale 11(26):12643–12654

    Article  CAS  Google Scholar 

  • Vasile C (2019) Polymeric nanomaterials: recent developments, properties and medical applications. Polymeric nanomaterials in nanotherapeutics, 1-66. Micro and Nano Technologies 235–259

    Google Scholar 

  • Vimal A, Kumar A (2017) Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng Rev 33:40–61. https://doi.org/10.1080/02648725.2017.1357294

    Article  CAS  Google Scholar 

  • Vina I, Karsakevich A, Bekers M (2001) Stabilization of anti-leukemic enzyme L-asparaginase by immobilization on polysaccharide levan. J Mol Catal B Enzym 11:551–558. https://doi.org/10.1016/S1381-1177(00)00043-6

    Article  CAS  Google Scholar 

  • Wade HE, Elsworth R, Herbert D, Keppie J, Sargeant K (1968) A new L-asparaginase with antitumour activity. Lancet 292(7571):776–777

    Article  Google Scholar 

  • Wahab RA, Elias N, Abdullah F, Ghoshal SK (2020) On the taught new tricks of enzymes immobilization: An all-inclusive overview. React Funct Polym 152:104613. https://doi.org/10.1016/j.reactfunctpolym.2020.104613

    Article  CAS  Google Scholar 

  • Wang F, Zhang YQ (2015) Bioconjugation of silk fibroin nanoparticles with enzyme and peptide and their characterization. Advances in protein chemistry and structural biology 98:263–291

    Google Scholar 

  • Wannasarit S, Wang S, Figueiredo P, Trujillo C, Eburnea F, Simón-Gracia L et al (2019) A virus-mimicking pH-responsive acetalated dextran-based membrane-active polymeric nanoparticle for intracellular delivery of antitumor therapeutics. Adv Funct Mater 29(51):1905352

    Article  CAS  Google Scholar 

  • Warrell RP Jr, Arlin ZA, Gee TS, Chou TC, Roberts J, Young CW (1982) Clinical evaluation of succinylated Acinetobacter glutaminase-asparaginase in adult leukemia. Cancer Treat Rep 66(7):1479–1485

    CAS  Google Scholar 

  • Wicki A, Ritschard R, Loesch U, Deuster S, Rochlitz C, Mamot C (2015) Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: Production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial. Int J Pharm 484(1–2):8–15

    Article  CAS  Google Scholar 

  • Wilder LM, Handali PR, Webb LJ, Crooks RM (2020) Interactions between oligoethylene glycol-capped AuNPs and attached peptides control peptide structure. Bioconjug Chem

    Google Scholar 

  • Willems L, Jacque N, Jacquel A, Neveux N, Trovati Maciel T, Lambert M, ... Bouscary D (2013) Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood, The Journal of the American Society of Hematology 122(20):3521–3532

    Google Scholar 

  • Williams RT, Guarecuco R, Gates LA, Barrows D, Passarelli MC, Carey B et al (2020) ZBTB1 regulates asparagine synthesis and leukemia cell response to L-asparaginase. Cell Metab 31(4):852–861

    Article  CAS  Google Scholar 

  • Xie X, Zhou W, Hu Y, Chen Y, Zhang H, Li Y (2018) A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis 9(3):1–16

    Article  Google Scholar 

  • Xu H, Chen CX, Hu J, Zhou P, Zeng P, Cao CH, Lu JR (2013) Dual modes of antitumor action of an amphiphilic peptide A(9)K. Biomaterials 34(11):2731–2737. https://doi.org/10.1016/j.biomaterials.2012.12.039. Epub 2013 Jan 23

    Article  CAS  Google Scholar 

  • Xu B, Cui Y, Wang W, Li S, Lyu C, Wang S et al (2020) Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv Mater 32(33):2003563

    Article  CAS  Google Scholar 

  • Zhang YQ, Tao ML, De Shen W et al (2004) Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 25:3751–3759. https://doi.org/10.1016/j.biomaterials.2003.10.019

    Article  CAS  Google Scholar 

  • Zhang B, Shi W, Li J, Liao C, Yang L, Huang W, Qian H (2017) Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance-reversing activities. Chem Biol Drug Des 90(5):972–980

    Article  CAS  Google Scholar 

  • Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, ... He H (2014) PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications. Journal of Controlled release 183:77–86

    Google Scholar 

  • Zhao Y, Ding B, Xiao X, Jiang F, Wang M, Hou Z et al (2020) Virus-like Fe3O4@ Bi2S3 nanozymes with resistance-free apoptotic hyperthermia-augmented nanozymitic activity for enhanced synergetic cancer therapy. ACS Appl Mater Interfaces 12(10):11320–11328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarty, N., Mathur, A., Singh, R.P. (2022). L-asparaginase: Insights into the Marine Sources and Nanotechnological Advancements in Improving Its Therapeutics. In: Sarma, H., Gupta, S., Narayan, M., Prasad, R., Krishnan, A. (eds) Engineered Nanomaterials for Innovative Therapies and Biomedicine. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-82918-6_4

Download citation

Publish with us

Policies and ethics