Skip to main content

A New Strategy for Form Finding and Optimal Design of Space Cable Network Structures

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Application

Abstract

Cable network structures, which are a class of nonlinear flexible structures, have been widely used in infrastructures and spacecrafts. In this work, a new form-finding method, namely, the fixed nodal position method (FNPM), is developed for optimal design of geometric configuration and internal force distribution for cable network structures, to meet the operation requirement of high shape/surface accuracy. Different from conventional methods, which usually adopts a stress-first-and-displacement-later procedure in form finding, the FNPM first assigns nodal coordinates for a cable network structure and then determines the internal force distribution of the structure by a nonlinear optimization process. The highlight of the FNPM is that the prescribed nodal coordinates are unchanged during the form-finding process. This unique feature of fixed nodal positions makes it possible to place the nodes of a cable network structure at desired locations, satisfying complicated structural constrains and yielding high shape/surface accuracy as required. As another advantage, the FNPM in form finding undertakes the assignment of geometric configuration (nodal coordinates) and the determination of internal force distribution separately. This translates into significant savings in computational effort, compared with conventional form-finding methods. The new form-finding method is applied to the optimal design of a large deployable mesh reflector of 865 nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.H. Argyris, T. Angelopoulos, B. Bichat, A general method for the shape finding of lightweight tension structures, Computer Methods in Applied Mechanics and Engineering, 3 (1974) 135–149.

    Article  Google Scholar 

  2. S. Yuan, B. Yang, H. Fang, Self-Standing Truss with Hard-Point-Enhanced Large Deployable Mesh Reflectors, AIAA Journal, 57 (2019) 5014–5026.

    Article  Google Scholar 

  3. S. Yuan, B. Yang, H. Fang, Enhancement of Large Deployable Mesh Reflectors by the Self-Standing Truss with Hard-Points, in: AIAA Scitech 2019 Forum, 2019, pp. 0752.

    Google Scholar 

  4. S. Yuan, B. Yang, The fixed nodal position method for form finding of high-precision lightweight truss structures, International Journal of Solids and Structures, 161 (2019) 82–95.

    Article  Google Scholar 

  5. S. Pellegrino, Structural computations with the singular value decomposition of the equilibrium matrix, International Journal of Solids and Structures, 30 (1993) 3025–3035.

    Article  MATH  Google Scholar 

  6. R. Haber, J. Abel, Initial equilibrium solution methods for cable reinforced membranes part I—formulations, Computer Methods in Applied Mechanics and Engineering, 30 (1982) 263–284.

    Article  MATH  Google Scholar 

  7. S. Pellegrino, Mechanics of kinematically indeterminate structures, in, University of Cambridge, 1986.

    Google Scholar 

  8. G. Tibert, Deployable tensegrity structures for space applications, Doctoral dissertation, KTH, 2002.

    Google Scholar 

  9. S. Pellegrino, Analysis of prestressed mechanisms, International Journal of Solids and Structures, 26 (1990) 1329–1350.

    Article  Google Scholar 

  10. C. Calladine, Buckminster Fuller's “tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames, International Journal of Solids and Structures, 14 (1978) 161–172.

    Article  MATH  Google Scholar 

  11. J. Zhang, M. Ohsaki, Adaptive force density method for form-finding problem of tensegrity structures, International Journal of Solids and Structures, 43 (2006) 5658–5673.

    Article  MATH  Google Scholar 

  12. R.B. Fuller, Synergetics: explorations in the geometry of thinking, Estate of R. Buckminster Fuller, 1982.

    Google Scholar 

  13. R. Motro, Structural morphology of tensegrity systems, International Journal of Space Structures, 11 (1996) 233–240.

    Article  MATH  Google Scholar 

  14. R. Motro, H. Nooshin, Forms and forces in tensegrity systems, in: Proceedings of third international conference on space structures, Elsevier, Amsterdam, 1984, pp. 180–185.

    Google Scholar 

  15. A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 26 (2011) 241–256.

    Article  Google Scholar 

  16. K. Koohestani, Form-finding of tensegrity structures via genetic algorithm, International Journal of Solids and Structures, 49 (2012) 739–747.

    Article  Google Scholar 

  17. D. Veenendaal, P. Block, An overview and comparison of structural form finding methods for general networks, International Journal of Solids and Structures, 49 (2012) 3741–3753.

    Article  Google Scholar 

  18. S. Pellegrino, C.R. Calladine, Matrix analysis of statically and kinematically indeterminate frameworks, International Journal of Solids and Structures, 22 (1986) 409–428.

    Article  Google Scholar 

  19. M. Masic, R.E. Skelton, P.E. Gill, Algebraic tensegrity form-finding, International Journal of Solids and Structures, 42 (2005) 4833–4858.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Shi, S. Yuan, B. Yang, New Methodology of Surface Mesh Geometry Design for Deployable Mesh Reflectors, Journal of Spacecraft and Rockets, 55 (2018) 266–281.

    Article  Google Scholar 

  21. F.E. Udwadia, R.E. Kalaba, Analytical dynamics: a new approach, Cambridge University Press, 2007.

    MATH  Google Scholar 

  22. S. Yuan, B. Yang, Design and Optimization of Tension Distribution for Space Deployable Mesh Reflectors, in: 26th AAS/AIAA Space Flight Mechanics Meeting, Univelt, Napa, CA, 2016, pp. 765–776.

    Google Scholar 

  23. K.E. Jensen, Numerical Optimization in Microfluidics, in: Complex Fluid-Flows in Microfluidics, Springer, 2018, pp. 95–108.

    Google Scholar 

  24. H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening, International Journal of Photoenergy, 2017 (2017).

    Google Scholar 

  25. M. Hintermüller, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM Journal on Optimization, 13 (2002) 865–888.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Tibert, S. Pellegrino, Deployable tensegrity reflectors for small satellites, Journal of Spacecraft and Rockets, 39 (2002) 701–709.

    Article  Google Scholar 

  27. S. Yuan, B. Yang, H. Fang, Form-Finding of Large Deployable Mesh Reflectors with Elastic Deformations of Supporting Structures, in: 2018 AIAA Spacecraft Structures Conference, 2018, pp. 1198.

    Google Scholar 

  28. I.K. Linkwitz, H.-J. Schek, Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen, Ingenieur-Archiv, 40 (1971) 145–158.

    Article  Google Scholar 

  29. H.-J. Schek, The force density method for form finding and computation of general networks, Computer methods in applied mechanics and engineering, 3 (1974) 115–134.

    Article  MathSciNet  Google Scholar 

  30. L. Gründig, E. Moncrieff, P. Singer, D. Ströbel, A history of the principal developments and applications of the force density method in Germany 1970–1999, 4th Int. Coll. Computation of Shell & Spatial Structures, (2000).

    Google Scholar 

  31. J. Sánchez, M.Á. Serna, P. Morer, A multi-step force–density method and surface-fitting approach for the preliminary shape design of tensile structures, Engineering structures, 29 (2007) 1966–1976.

    Article  Google Scholar 

  32. G. Aboul-Nasr, S.A. Mourad, An extended force density method for form finding of constrained cable nets, Case Studies in Structural Engineering, 3 (2015) 19–32.

    Article  Google Scholar 

  33. M. Barnes, Form-finding and analysis of tension space structures by dynamic relaxation, in, City University, 1977.

    Google Scholar 

  34. A. Day, J. Bunce, The analysis of hanging roofs, Arup Journal, (1969) 30–31.

    Google Scholar 

  35. N.B.H. Ali, L. Rhode-Barbarigos, I.F. Smith, Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm, International Journal of Solids and Structures, 48 (2011) 637–647.

    Article  MATH  Google Scholar 

  36. M. Barnes, Form finding and analysis of tension structures by dynamic relaxation, International journal of space structures, 14 (1999) 89–104.

    Article  Google Scholar 

  37. R. Motro, S. Belkacem, N. Vassart, Form finding numerical methods for tensegrity systems, in: Spatial, Lattice and Tension Structures, ASCE, 1994, pp. 704–713.

    Google Scholar 

  38. A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity structures, International Journal of Space Structures, 26 (2011) 241–255.

    Article  Google Scholar 

  39. R. Connelly, M. Terrell, Globally rigid symmetric tensegrities, Structural Topology 1995 núm 21, (1995).

    MATH  Google Scholar 

  40. J. Argyris, D.W. Scharpf, Large deflection analysis of prestressed networks, Journal of the Structural Division, 98 (1972) 633–654.

    Article  Google Scholar 

  41. P. Krishna, Cable-suspended roofs, McGraw-Hill Companies, 1978.

    Google Scholar 

  42. H. Murakami, Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion, International Journal of Solids and Structures, 38 (2001) 3599–3613.

    Article  MATH  Google Scholar 

  43. H. Murakami, Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis, International Journal of Solids and Structures, 38 (2001) 3615–3629.

    Article  Google Scholar 

  44. S. Guest, The stiffness of prestressed frameworks: a unifying approach, International Journal of Solids and Structures, 43 (2006) 842–854.

    Article  MATH  Google Scholar 

  45. C. Fletcher, Computational techniques for fluid dynamics 2: Specific techniques for different flow categories, Springer Science & Business Media, 2012.

    Google Scholar 

  46. R. Nie, B. He, L. Zhang, Y. Fang, Deployment analysis for space cable net structures with varying topologies and parameters, Aerospace Science and Technology, 68 (2017) 1–10.

    Article  Google Scholar 

  47. R. Nie, B. He, L. Zhang, Deployment dynamics modeling and analysis for mesh reflector antennas considering the motion feasibility, Nonlinear Dynamics, 91 (2018) 549–564.

    Article  Google Scholar 

  48. K. Nakamura, N. Nakamura, S. Ozawa, A. Uematsu, H. Hoshino, T. Kimura, Concept Design of 15m class Light Weight Deployable Antenna Reflector for L-band SAR Application, in: 3rd AIAA Spacecraft Structures Conference, 2016, pp. 0701.

    Google Scholar 

  49. Y. Tang, T. Li, X. Ma, Pillow Distortion Analysis for a Space Mesh Reflector Antenna, AIAA Journal, (2017) 3206–3213.

    Google Scholar 

  50. M.W. Thomson, Astromesh deployable reflectors for Ku-and Ka-band commercial satellites, in: 20th AIAA International Communication Satellite Systems Conference and Exhibit, 2002, pp. 15.

    Google Scholar 

  51. P. Agrawal, M. Anderson, M. Card, Preliminary design of large reflectors with flat facets, IEEE transactions on antennas and propagation, 29 (1981) 688–694.

    Article  Google Scholar 

  52. S. Yuan, B. Yang, H. Fang, The Projecting Surface Method for improvement of surface accuracy of large deployable mesh reflectors, Acta Astronautica, 151 (2018) 678–690.

    Article  Google Scholar 

  53. S. Yuan, B. Yang, H. Fang, Direct Root-Mean-Square Error for Surface Accuracy Evaluation of Large Deployable Mesh Reflectors, in: AIAA Scitech 2020 Forum, 2020, pp. 0935.

    Google Scholar 

  54. S. Morterolle, B. Maurin, J. Quirant, C. Dupuy, Numerical form-finding of geotensoid tension truss for mesh reflector, Acta Astronautica, 76 (2012) 154–163.

    Article  Google Scholar 

  55. J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sichen Yuan .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Global Minimizer and Solution of the Optimization Problem (6.12)

This appendix shows that the solution of internal forces given by Eq. (6.13) and (6.14) is a global minimizer of the optimization problem (6.12).

The general solution of Eq. (6.2) for truss structures of types III and IV with consistent external forces is given by

$$ T=-{M}^{+}{F}_c+{M}_{\mathrm{null}}\alpha $$
(A1)

where M null is the null space of matrix M and α is an arbitrary s by 1 vector, with s being the states of self-stress. Substituting the solution T into the quadratic objective function in the optimization problem (6.12) yields

$$ f={\left\Vert T-{T}_{\mathrm{des}}\right\Vert}^2={\alpha}^T\left({M}_{\mathrm{null}}^T{M}_{\mathrm{null}}\right)\alpha -2{C}^T{M}_{\mathrm{null}}\alpha $$
(A2)

where C is a constant vector given by

$$ C={M}^{+}{F}_c+{T}_{\mathrm{des}} $$
(A3)

Consider the following lemma, which is proved in [55].

Lemma

Let f q be a quadratic function given by

$$ {f}_q={\alpha}^T B\alpha +2{g}^T\alpha $$
(A4)

where α is a vector of variables, and B is any symmetric matrix. The following two statements hold true:

  1. (1)

    Function f q attains a minimum if and only if B is positive semi-definite and g is in the range of B. If B is positive semi-definite, then every α satisfying = −g is a global minimizer of f q.

  2. (2)

    Function q has a unique minimizer if and only if B is positive definite.

Note that function f in Eq. (A2) has the same form as function f q in (A4), with g =  − C T M null and \( B={M}_{\mathrm{null}}^T{M}_{\mathrm{null}} \), which is positive definite because all the column vectors M null are linearly independent. By the lemma, function f has the unique global minimizer given by

$$ {\alpha}^{\ast }={B}^{-1}g={\left({M}_{\mathrm{null}}^T{M}_{\mathrm{null}}\right)}^{-1}\left({C}^T{M}_{\mathrm{null}}\right)={M}_{\mathrm{null}}^T{T}_{\mathrm{des}} $$
(A5)

With α *, the internal force distribution T *, which is the minimum deviation from the desired internal force distribution T des, is then obtained as

$$ {T}^{\ast }=-{M}^{+}{F}_c+{M}_{\mathrm{null}}{\alpha}^{\ast } $$
(A6)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, S., Yang, B. (2022). A New Strategy for Form Finding and Optimal Design of Space Cable Network Structures. In: Dai, L., Jazar, R.N. (eds) Nonlinear Approaches in Engineering Application. Springer, Cham. https://doi.org/10.1007/978-3-030-82719-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82719-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82718-2

  • Online ISBN: 978-3-030-82719-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics