Skip to main content

The Histopathology of Melanocytic Nevi and Malignant Melanoma

  • Chapter
  • First Online:
Melanoma in Clinical Practice

Abstract

Melanocytic tumors are a common specimen in surgical pathology. Change within a pre-existing lesion and/or irregularity of a lesion cause clinical concern resulting in surgical removal. A large number of different types of nevus are now recognized, many of which can have features that mimic a malignant tumor and prompt a misdiagnosis. Furthermore, some less common variants of melanocytic tumor challenge the simplistic benign–malignant dichotomy, having an intermediate biological behavior. Similarly, malignant melanoma is not a uniform genus and numerous morphological subtypes pose specific diagnostic challenges and are associated with differing clinical outcomes. Considerable research into the molecular abnormalities of melanocytic tumors has given rise to an emergent genetic classification, imperfectly grafted onto our traditional morphological understanding, as this rapidly developing field constantly unmasks the over simplification of the latter. Nevertheless, current diagnosis and prognostication remain very much a morphological exercise and successful patient management requires a thorough knowledge of the various types of nevus and melanoma, diagnostic challenges associated with each, and the histological parameters that guide prognosis. These are discussed within this chapter, under benign, intermediate, and malignant headings, and pitfalls and challenges encountered in providing the pathological staging data outlined. Finally, immunohistochemistry has a rather modest role in the assessment of melanocytic tumor biology, but some well-defined applications and documented potential traps are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Troxel DB. Pitfalls in the diagnosis of malignant melanoma: findings of a risk management panel study. Am J Surg Pathol. 2003;27:1278–83.

    Google Scholar 

  2. Brogelli L, De Giorgi V, Bini F, Giannotti B. Melanocytic naevi: clinical features and correlation with the phenotype in healthy young males in Italy. Br J Dermatol. 1991;125(4):349–52.

    CAS  PubMed  Google Scholar 

  3. Maize JC, Foster G. Age-related changes in melanocytic naevi. Clin Exp Dermatol. 1979;4(1):49–58.

    CAS  PubMed  Google Scholar 

  4. Mackie RM, English J, Aitchison TC, Fitzsimons CP, Wilson P. The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy british population. Br J Dermatol. 1985;113(2):167–74.

    CAS  PubMed  Google Scholar 

  5. Holly E, Kelly JW, Steven S, Chiu S. Number of melanocytic nevi as a major risk factor for malignant melanoma. J Am Acad Dermatol. 1987;17(3):459–68.

    CAS  PubMed  Google Scholar 

  6. Elder D, Murphy G. Melanocytic tumors of the skin. American Registrty of Pathology; 1991.

    Google Scholar 

  7. Kao GF, Helwig EB, Graham JH. Balloon cell malignant melanoma of the skin. Cancer. 1989;69(12):2942–52.

    Google Scholar 

  8. Perez MT, Suster S. Balloon cell change in cellular blue nevus. Am J Dermatopathol. 1999;21(2):181–4.

    CAS  PubMed  Google Scholar 

  9. Wayte DM, Helwig EB. Halo nevi. Cancer. 1968;22(1):69–90.

    CAS  PubMed  Google Scholar 

  10. Stegmaier O, Becker S, Medenica M. Multiple halo nevi: histopathological findings in a 14-year-old boy. Arch Dermatol. 1969;99(2):180–9.

    CAS  PubMed  Google Scholar 

  11. Gauthier Y, Surléve-Bazeille JE, Texier L. Halo nevi without dermal infiltrate. Arch Dermatol. 1978;114:1718.

    Google Scholar 

  12. Kornberg R, Ackerman AB. Pseudomelanoma: recurrent melanocytic nevus following partial surgical removal. Arch Dermatol. 1975;111(12):1588–90. https://doi.org/10.1001/archderm.1975.01630240044008.

    Article  CAS  PubMed  Google Scholar 

  13. Arps DP, Fullen DR, Chan MP. Atypical umbilical naevi: histopathological analysis of 20 cases. Histopathology. 2015;66(3):363–9.

    PubMed  Google Scholar 

  14. Gleason BC, Hirsch MS, Nucci MR, Schmidt BA, Zembowicz A, Mihm MC, et al. Atypical genital nevi: a clinicopathologic analysis of 56 cases. Am J Surg Pathol. 2008;32(1):51–7.

    PubMed  Google Scholar 

  15. Hosler GA, Moresi JM, Barrett TL. Nevi with site-related atypia: a review of melanocytic nevi with atypical histologic features based on anatomic site. J Cutan Pathol. 2008;35:889–98.

    Google Scholar 

  16. Rongioletti F, Urso C, Batolo D, Chimenti S, Fanti PA, Filotico R, et al. Melanocytic nevi of the breast: a histologic case-control study. J Cutan Pathol. 2004;31(2):137–40.

    CAS  PubMed  Google Scholar 

  17. Rongioletti F, Ball RA, Marcus R, Barnhill RL. Histopathological features of flexural melanocytic nevi: a study of 40 cases. J Cutan Pathol. 2000;27(5):215–7.

    CAS  PubMed  Google Scholar 

  18. Saad AG, Patel S, Mutasim DF. Melanocytic nevi of the auricular region: histologic characteristics and diagnostic difficulties. Am J Dermatopathol. 2005;27(2):111–5.

    CAS  PubMed  Google Scholar 

  19. Fallowfield ME, Collina G, Cook MG. Melanocytic lesions of the palm and sole. Histopathology. 1994;24(5):463–7.

    CAS  PubMed  Google Scholar 

  20. Evans MJ, Gray ES, Blessing K. Histopathological features of acral melanocytic nevi in children: study of 21 cases. Pediatr Dev Pathol. 1998;1(5):388–92.

    CAS  PubMed  Google Scholar 

  21. LeBoit PE. A diagnosis for maniacs. Am J Dermatopathol. 2000;22(6):556–8.

    CAS  PubMed  Google Scholar 

  22. Walton RG, Jacobs AH, Cox AJ. Pigmented lesions in newborn infants. Br J Dermatol. 1976;95(4):389–96.

    CAS  PubMed  Google Scholar 

  23. Swerdlow AJ, Green A. Melanocytic naevi and melanoma: an epidemiological perspective. Br J Dermatol. 1987;117(2):137–46.

    CAS  PubMed  Google Scholar 

  24. Gari LM, Rivers JK, Kopf AW. Melanomas arising in large congenital nevocytic nevi: a prospective study. Pediatr Dermatol. 1988;5(3):151–8.

    CAS  PubMed  Google Scholar 

  25. Egan CL, Oliveria SA, Elenitsas R, Hanson J, Halpern AC. Cutaneous melanoma risk and phenotypic changes in large congenital nevi: a follow-up study of 46 patients. J Am Acad Dermatol. 1998;39(6):923–32.

    CAS  PubMed  Google Scholar 

  26. DeDavid M, Orlow SJ, Provost N, Marghoob AA, Rao BK, Huang CL, et al. A study of large congenital melanocytic nevi and associated malignant melanomas: review of cases in the New York University Registry and the world literature. J Am Acad Dermatol. 1997;36(3):409–16.

    CAS  PubMed  Google Scholar 

  27. Marghoob A, Schoenbach S, Kopf A, Orlow S, Nossa R, Bart R. Development malignant. Arch Dermatol. 1996;132:170–5.

    CAS  PubMed  Google Scholar 

  28. Giam YC, Williams ML, LeBoit PE, Orlow SJ, Eichenfield LF, Frieden IJ. Neonatal erosions and ulcerations in giant congenital melanocytic nevi. Pediatr Dermatol. 1999;16(5):354–8.

    CAS  PubMed  Google Scholar 

  29. Leech SN, Bell H, Leonard N, Jones SL, Geurin D, McKee PH, et al. Neonatal giant congenital nevi with proliferative nodules. Arch Dermatol. 2004;140(1):83–8.

    PubMed  Google Scholar 

  30. Borbujo J, Jara M, Cortes L, De Leon LS. A newborn with nodular ulcerated lesion on a giant congenital nevus. Pediatr Dermatol. 2000;17(4):299–301.

    CAS  PubMed  Google Scholar 

  31. Phadke PA, Rakheja D, Le LP, Selim MA, Kapur P, Davis A, et al. Proliferative nodules arising within congenital melanocytic nevi. Am J Surg Pathol. 2011;35(5):656–69.

    PubMed  Google Scholar 

  32. Nguyen TLT, Theos A, Kelly DR, Busam K, Andea AA. Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: a diagnostic pitfall. Am J Dermatopathol. 2013;35(1):16–21.

    Google Scholar 

  33. Bastian BC, Xiong J, Frieden IJ, Williams ML, Chou P, Busam K, et al. Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol. 2002;161(4):1163–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yélamos O, Arva NC, Obregon R, Yazdan P, Wagner A, Guitart J, et al. A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children. Am J Surg Pathol. 2015;39(3):405–15.

    PubMed  Google Scholar 

  35. Lacoste C, Avril MF, Frassati-Biaggi A, Dupin N, Chrétien-Marquet B, Mahé E, et al. Malignant melanoma arising in patients with a large congenital melanocytic naevus: retrospective study of 10 cases with cytogenetic analysis. Acta Derm Venereol. 2015;95(6):686–90.

    CAS  PubMed  Google Scholar 

  36. Elder DE. Dysplastic naevi: an update. Histopathology. 2010;56(1):112–20.

    PubMed  Google Scholar 

  37. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345–58.

    CAS  PubMed  Google Scholar 

  38. Augustsson A, Stierner U, Suurkula M, Rosdahl I. Prevalence of common and dysplastic naevi in a Swedish population. Br J Dermatol. 1991;124(2):152–6.

    CAS  PubMed  Google Scholar 

  39. Cook MG, Clarke TJ, Humphreys S, Fletcher A, McLaren KM, Smith NP, et al. A nationwide survey of observer variation in the diagnosis of thin cutaneous malignant melanoma including the MIN terminology. J Clin Pathol. 1997;50(3):202–5.

    Google Scholar 

  40. Elder D, Massi D, Scolyer RA, Willemze R. WHO classification of skin tumours, vol. 11. 4th ed; 2018. p. 82–6.

    Google Scholar 

  41. Piepkorn M, Meyer LJ, Goldgar D, Seuchter SA, Cannon-Albright LA, Skolnick MH, et al. The dysplastic melanocytic nevus: a prevalent lesion that correlates poorly with clinical phenotype. J Am Acad Dermatol. 1989;20(3):407–15.

    CAS  PubMed  Google Scholar 

  42. Klein L, Barr RJ, Beach L. Histologic atypia in clinically benign nevi. A prospective study. J Am Acad Dermatol. 1990;22(2):275–82. https://doi.org/10.1016/0190-9622(90)70037-I.

    Article  CAS  PubMed  Google Scholar 

  43. Annessi G, Cattaruzza MS, Abeni D, Baliva G, Laurenza M, Macchini V, et al. Correlation between clinical atypia and histologic dysplasia in acquired melanocytic nevi. J Am Acad Dermatol. 2001;45(1):77–85.

    CAS  PubMed  Google Scholar 

  44. Urso C, Bondi R. The histological spectrum of acquired nevi an analysis of the intraepidermal melanocytic proliferation in common and dysplastic nevi. Pathol Res Pract. 1994;190(6):609–14. https://doi.org/10.1016/S0344-0338(11)80399-7.

    Article  CAS  PubMed  Google Scholar 

  45. Braun-Falco M, Hein R, Ring J, McNutt NS. Histopathological characteristics of small diameter melanocytic naevi. J Clin Pathol. 2003;56(6):459–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiong MY, Rabkin MS, Piepkorn MW, Barnhill RL, Argenyi Z, Erickson L, et al. Diameter of dysplastic nevi is a more robust biomarker of increased melanoma risk than degree of histologic dysplasia: a case-control study. J Am Acad Dermatol. 2014;71:1257–1258.e4.

    Google Scholar 

  47. Arumi-Uria M, McNutt NS, Finnerty B. Grading of atypia in nevi: correlation with melanoma risk. Mod Pathol. 2003;16(8):764–71.

    PubMed  Google Scholar 

  48. Shors AR, Kim S, White E, Argenyi Z, Barnhill RL, Duray P, et al. Dysplastic naevi with moderate to severe histological dysplasia: a risk factor for melanoma. Br J Dermatol. 2006;155(5):988–93.

    CAS  PubMed  Google Scholar 

  49. Smoller BR. Histologic criteria for diagnosing primary cutaneous malignant melanoma. Mod Pathol. 2006;19:34–40.

    Google Scholar 

  50. Duncan LM, Berwick M, Bruijn JA, Randolph Byers H, Mihm MC, Barnhill RL. Histopathologic recognition and grading of dysplastic melanocytic nevi: an interobserver agreement study. J Invest Dermatol. 1993;100(3 Suppl):318–21.

    Google Scholar 

  51. Shea CR, Vollmer RT, Prieto VG. Correlating architectural disorder and cytologic atypia in Clark (dysplastic) melanocytic nevi. Hum Pathol. 1999;30(5):500–5.

    CAS  PubMed  Google Scholar 

  52. de Wit PE, van’t Hof-Grootenboer B, Ruiter DJ, Bondi R, Brocker EB, Cesarini JP, et al. Validity of the histopathological criteria used for diagnosing dysplastic naevi. An interobserver study by the pathology subgroup of the EORTC Malignant Melanoma Cooperative Group. Eur J Cancer. 1993;29A(6):831–9.

    PubMed  Google Scholar 

  53. Clemente C, Cochran AJ, Elder DE, Levene A, MacKie RM, Mihm MC, et al. Histopathologic diagnosis of dysplastic nevi: concordance among pathologists convened by the World Health Organization Melanoma Programme. Hum Pathol. 1991;22(4):313–9.

    CAS  PubMed  Google Scholar 

  54. Elder D, Massi D, Scolyer R, Willemze R. WHO classification of skin tumours, vol. 11. 4th ed. WHO; 2018, 84 p

    Google Scholar 

  55. Rodrigues H, Ackerman L. Cellular blue nevus: clinicopathologic study of forty-five cases. Cancer. 1968;21(1):393–405.

    Google Scholar 

  56. Bhawan J, Cao SL. Amelanotic blue nevus: a variant of blue nevus. Am J Dermatopathol. 1999;21(3):225–8.

    CAS  PubMed  Google Scholar 

  57. Carr S, See J. Hypopigmented common blue nevus. J Cutan Pathol. 1997;24:494–8.

    CAS  PubMed  Google Scholar 

  58. Zembowicz A, Phadke PA. Blue nevi and variants: an update. Arch Pathol Lab Med. 2011;135(3):327–36.

    PubMed  Google Scholar 

  59. Michal M, Baumruk K, Skálová A. Myxoid change within cellular blue naevi: a diagnostic pitfall. Histopathology. 1992;20(6):527–30.

    CAS  PubMed  Google Scholar 

  60. Spitz S. Melanomas of childhood. Am J Pathol. 1948;24(3):591–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. McWhorter HE, Woolner LB. Pigmented nevi, juvenile melanomas, and malignant melanomas i n children. Cancer. 1954;7(3):564–84.

    CAS  PubMed  Google Scholar 

  62. Requena C, Requena L, Kutzner H, Sa E. Spitz nevi series. Am J Dermatopathol. 2009;31(2):107–16.

    PubMed  Google Scholar 

  63. Hamm H, Happle R, Bröcker EB. Multiple agminate spitz naevi: review of the literature and report of a case with distinctive immunohistological features. Br J Dermatol. 1987;117(4):511–22.

    CAS  PubMed  Google Scholar 

  64. Kamino H, Flotte TJ, Misheloff E, Greco MA, Ackerman AB. Eosinophilic globules in Spitz’s nevi. New findings and a diagnostic sign. Am J Dermatopathol. 1979;1(4):319–24.

    CAS  PubMed  Google Scholar 

  65. Harvell JD, Meehan SA, LeBoit PE. Spitz’s nevi with halo reaction: a histopathologic study of 17 cases. J Cutan Pathol. 1997;24(10):611–9.

    CAS  PubMed  Google Scholar 

  66. Busam K, Barnhill R. Pagetoid spitz nevus. Am J Surg Pathol. 1995;19(9):1061–7.

    CAS  PubMed  Google Scholar 

  67. Mackie RM, Doherty VR. The desmoplastic melanocytic naevus: a distinct histological entity. Histopathology. 1992;20(3):207–11.

    CAS  PubMed  Google Scholar 

  68. Barr RJ, Morales RV, Graham JH. Desmoplastic nevus. Cancer. 1980;46:557–64.

    CAS  PubMed  Google Scholar 

  69. Diaz-Cascajo C, Borghi S, Weyers W. Angiomatoid Spitz nevus: a distinct variant of desmoplastic Spitz nevus with prominent vasculature. Am J Dermatopathol. 2000;22(2):135–9.

    CAS  PubMed  Google Scholar 

  70. Sagebiel RW, Chinn EK, Egbert BM. Pigmented spindle cell nevus. Clinical and histologic review of 90 cases. Am J Surg Pathol. 1984;8(9):645–53.

    CAS  PubMed  Google Scholar 

  71. Barnhill RL, MIHM MC. Pigmented spindle cell naevus and its variants: distinction from melanoma. Br J Dermatol. 1989;121(6):717–26.

    CAS  PubMed  Google Scholar 

  72. Sau P, Graham JH, Helwig EB. Pigmented spindle cell nevus: a clinicopathologic analysis of ninety-five cases. J Am Acad Dermatol. 1992;28(4):565–71. https://doi.org/10.1016/0190-9622(93)70075-5.

    Article  Google Scholar 

  73. Wistuba I, Gonzalez S. Eosinophilic globules in pigmented spindle cell nevus. Am J Dermatopathol. 1990 Jun;12(3):268–71.

    CAS  PubMed  Google Scholar 

  74. Cook MG. Benign melanocytic lesions mimicking melanomas. Pathology. 2004;36(5):414–8.

    PubMed  Google Scholar 

  75. De Rosa G, Zalaudek I, Staibano S, Peris K, Rubegni P, Piccolo D, et al. The spectrum of spitz nevi. Arch Dermatol. 2005;141(11):1381–7.

    PubMed  Google Scholar 

  76. Barnhill RL, Barnhill MA, Berwick M, Mihm MC. The histologic spectrum of pigmented spindle cell nevus: a review of 120 cases with emphasis on atypical variants. Hum Pathol. 1991;22(1):52–8.

    CAS  PubMed  Google Scholar 

  77. Díaz A, Valera A, Carrera C, Hakim S, Aguilera P, García A, et al. Pigmented spindle cell nevus: clues for differentiating it from spindle cell malignant melanoma. A comprehensive survey including clinicopathologic, immunohistochemical, and FISH studies. Am J Surg Pathol. 2011;35(11):1733–42.

    PubMed  Google Scholar 

  78. Cooper PH. Deep penetrating (plexiform spindle cell) nevus. J Cutan Pathol. 1992;19(3):172–80.

    Google Scholar 

  79. Hung T, Yang A, Mihm MC, Barnhill RL. The plexiform spindle cell nevus nevi and atypical variants: report of 128 cases. Hum Pathol. 2014;45(12):2369–78. https://doi.org/10.1016/j.humpath.2014.08.009.

    Article  PubMed  Google Scholar 

  80. Mehregan DA, Mehregan AH. Deep penetrating nevus. Arch Dermatol. 1993;129:328–31.

    CAS  PubMed  Google Scholar 

  81. Seab JA, Graham JH, Helwig EB. Deep penetrating nevus. Am J Surg Pathol. 1989;13(1):39–44.

    PubMed  Google Scholar 

  82. Robson A, Morley-Quante M, Hempel H, McKee PH, Calonje E. Deep penetrating naevus: clinicopathological study of 31 cases with further delineation of histological features allowing distinction from other pigmented benign melanocytic lesions and melanoma. Histopathology. 2003;43(6):529–37.

    CAS  PubMed  Google Scholar 

  83. Abraham RM, Ming E, Elder DE, Xu X. An atypical melanocytic lesion without genomic abnormalities shows locoregional metastasis. J Cutan Pathol. 2012;39:21–4.

    PubMed  PubMed Central  Google Scholar 

  84. Magro C, Abraham RM, Guo R, Li S, Wang X, Proper S, et al. Deep penetrating nevus-like borderline tumors: a unique subset of ambiguous melanocytic tumors with malignant potential and normal cytogenetics. Eur J Dermatol. 2014;24(October):594–602.

    PubMed  Google Scholar 

  85. Cerroni L, Barnhill R, Elder D, Gottlieb G, Heenan P, Kutzner JH, et al. Melanocytic tumors of uncertain malignant potential results of a tutorial held at the XXIX symposium of the International Society of Dermatopathology in Graz, October 2008. Am J Surj Pathol. 2010;34(3):314–26.

    Google Scholar 

  86. Cosgarea I, Griewank KG, Ungureanu L, Tamayo A. Deep penetrating nevus and borderline-deep penetrating nevus: a literature review. Front Oncol. 2020;10(May):1–7.

    Google Scholar 

  87. Scolyer RAS, Zhuang L, Palmer AA, Thompson JOHNFT, Arthy STWMCC. Combined naevus: a benign lesion frequently misdiagnosed both clinically and pathologically as melanoma. Pathology. 2004;36(October):419–27.

    PubMed  Google Scholar 

  88. Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yeh I, Mully TW, Weisner T, Vemula SS, Mirza SA, Sparatta AJ, et al. Ambiguous melanocytic tumors with loss of 3p21. Am J Surg Pathol. 2014;38(8):1088–95.

    PubMed  PubMed Central  Google Scholar 

  90. Llamas-Velasco M, Pérez-Gónzalez YC, Requena L, Kutzner H. Histopathologic clues for the diagnosis of Wiesner nevus. J Am Acad Dermatol. 2014;70(3):549–54.

    PubMed  Google Scholar 

  91. Vilain RE, McCarthy SW, Thompson JF, Scolyer RA. BAP1-inactivated spitzoid naevi. Am J Surg Pathol. 2015;39(5):722.

    PubMed  Google Scholar 

  92. Mandal RV, Murali R, Lundquist KF, Ragsdale BD, Heenan P, McCarthy SW, et al. Pigmented epithelioid melanocytoma: favorable outcome after 5-year follow-up. Am J Surg Pathol. 2009;33(12):1778–82.

    PubMed  Google Scholar 

  93. O’Grady TC, Barr RJ, Billman G, Cunningham BB. Epithelioid blue nevus occurring in children with no evidence of Carney complex. Am J Dermatopathol. 1999;21(5):483–6.

    PubMed  Google Scholar 

  94. Ward JR, Brady SP, Tada H, Levin NA. Pigmented epithelioid melanocytoma. Int J Dermatol. 2006;45(12):1403–5.

    PubMed  Google Scholar 

  95. Antony FC, Sanclemente G, Shaikh H, Trelles AS, Calonje E. Pigment synthesizing melanoma (so-called animal type melanoma): a clinicopathological study of 14 cases of a poorly known distinctive variant of melanoma. Histopathology. 2006;48(6):754–62.

    CAS  PubMed  Google Scholar 

  96. Scolyer RA, Thompson JF, Stretch JR, Sharma R, McCarthy SW. Pathology of melanocytic lesions: new, controversial, and clinically important issues. J Surg Oncol. 2004;86(4):200–11.

    PubMed  Google Scholar 

  97. Clark WHJ, From L, Bernardino EA, Mihm MC. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969;29(3):705–27.

    PubMed  Google Scholar 

  98. Coleman WP, Loria PR, Reed RJ, Krementz ET. Acral lentiginous melanoma. Arch Dermatol. 2015;116:773–6.

    Google Scholar 

  99. Clark WH, Elder DE, Van Horn M. The biologic forms of malignant melanoma. Hum Pathol. 1986;17(5):443–50.

    PubMed  Google Scholar 

  100. King R, Page RN, Googe PB, Mihm MC. Lentiginous melanoma: a histologic pattern of melanoma to be distinguished from lentiginous nevus. Mod Pathol. 2005;18(10):1397–401.

    PubMed  Google Scholar 

  101. Braun-Falco M, Friedrichson E, Ring J. Subepidermal cleft formation as a diagnostic marker for cutaneous malignant melanoma. Hum Pathol. 2005;36(4):412–5.

    PubMed  Google Scholar 

  102. Walters RF, Groben PA, Busam K, Millikan RC, Rabinovitz H, Cognetta A, et al. Consumption of the epidermis: a criterion in the differential diagnosis of melanoma and dysplastic nevi that is associated with increasing Breslow depth and ulceration. Am J Dermatopathol. 2007;29(6):527–33.

    PubMed  Google Scholar 

  103. Kutzner H, Metzler G, Argenyi Z, Requena L, Palmedo G, Mentzel T, et al. Histological and genetic evidence for a variant of superficial spreading melanoma composed predominantly of large nests. Mod Pathol. 2012;25(6):838–45.

    PubMed  Google Scholar 

  104. Chamberlain AJ, Fritschi L, Giles GG, Dowling JP, Kelly JW. Nodular type and older age as the Most significant associations of thick melanoma in Victoria, Australia. Arch Dermatol. 2002;138:609–14.

    PubMed  Google Scholar 

  105. Heenan PJ. Nodular melanoma is not a distinct entity. Arch Dermatol. 2003;139:387; author reply 387–8.

    Google Scholar 

  106. Kuchelmeister C, Schaumburg-Lever G, Garbe C. Acral cutaneous melanoma in caucasians: clinical features, histopathology and prognosis in 112 patients. Br J Dermatol. 2000;143(2):275–80.

    CAS  PubMed  Google Scholar 

  107. Ishihara Y, Saida T, Miyazaki A, Koga H, Taniguchi A, Tsuchida T, et al. Early acral melanoma in situ: correlation between the parallel ridge pattern on dermoscopy and microscopic features. Am J Dermatopathol. 2006;28(1):21–7.

    PubMed  Google Scholar 

  108. Arrington JH, Reed RJ, Ichinose H, Krementz ET. Plantar lentiginous melanoma: a distinctive variant of human cutaneous malignant melanoma. Am J Surg Pathol. 1977;1(2):131–43.

    PubMed  Google Scholar 

  109. Tan KB, Moncrieff M, Thompson JF, McCarthy SW, Shaw HM, Quinn MJ, et al. Subungual melanoma: a study of 124 cases highlighting features of early lesions, potential pitfalls in diagnosis, and guidelines for histologic reporting. Am J Surg Pathol. 2007;31(12):1902–12.

    PubMed  Google Scholar 

  110. Cachia AR, Kedziora AM. Subungual malignant melanoma with cartilaginous differentiation. Am J Dermatopathol. 1999 Apr;21(2):165–9.

    CAS  PubMed  Google Scholar 

  111. Toda S, Heasley DD, Mihm MC. Osteogenic melanoma: stromal metaplasia in association with subungual melanoma. Histopathology. 1997;31:293–5.

    Google Scholar 

  112. Gerami P, Scolyer RA, Xu X, Elder DE, Abraham RM, Fullen D, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am J Surg Pathol. 2013;37(5):676–84.

    PubMed  Google Scholar 

  113. Elder D, Massi D, Scolyer RA, Willemze R. WHO classification of skin tumours, vol. 11. 4th ed. WHO; 2018. p. 66–71.

    Google Scholar 

  114. Clark WH, Braitman LE, Trock BJ, Schultz D, Synnestvedt M, Halpern AC. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989:1893–904.

    Google Scholar 

  115. Dupont Guerry I, Synnestvedt M, Elder DE, Schultz D. Lessons from tumor progression: the invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent. J Invest Dermatol. 1993;100(3 Suppl):S342–5. https://doi.org/10.1038/jid.1993.60.

    Article  Google Scholar 

  116. Elder DE, Guerry D 4th, Epstein MN, Zehngebot L, Lusk E, Van Horn M, et al. Invasive malignant melanomas lacking competence for metastasis. Am J Dermatopathol. 1984;6 Suppl:55–61.

    CAS  PubMed  Google Scholar 

  117. Gimotty PA, Elder DE, Fraker DL, Botbyl J, Sellers K, Elenitsas R, et al. Identification of high-risk patients among those diagnosed with thin cutaneous melanomas. J Clin Oncol. 2007;25(9):1129–34.

    PubMed  Google Scholar 

  118. Acker SM, Nicholson JH, Rust PF, Maize JC. Morphometric discrimination of melanoma in situ of sun-damaged skin from chronically sun-damaged skin. J Am Acad Dermatol. 1998;39(2I):239–45.

    CAS  PubMed  Google Scholar 

  119. Weyers W, Bonczkowitz M, Weyers I, Bittinger A, Schill WB. Melanoma in situ versus melanocytic hyperplasia in sun-damaged skin. Assessment of the significance of histopathologic criteria for differential diagnosis. Am J Dermatopathol. 1996;18(6):560–6.

    CAS  PubMed  Google Scholar 

  120. Cohen LM. The starburst giant cell is useful for distinguishing lentigo maligna from photodamaged skin. J Am Acad Dermatol. 1996;35(6):962–8.

    CAS  PubMed  Google Scholar 

  121. Bax MJ, Johnson TM, Harms PW, Schwartz JL, Zhao L, Fullen DR, et al. Detection of occult invasion in melanoma in situ. JAMA Dermatol. 2016;152(11):1201–8.

    PubMed  Google Scholar 

  122. Beltraminelli H, El Shabrawi-Caelen L, Kerl H, Cerroni L. Melan-a-positive “pseudomelanocytic nests”: A pitfall in the histopathologic and immunohistochemical diagnosis of pigmented lesions on sun-damaged skin. Am J Dermatopathol. 2009;31(3):305–8.

    PubMed  Google Scholar 

  123. Kim J, Taube JM, McCalmont TH, Glusac EJ. Quantitative comparison of MiTF, Melan-A, HMB-45 and Mel-5 in solar lentigines and melanoma in situ. J Cutan Pathol. 2011;38(10):775–9.

    PubMed  Google Scholar 

  124. Christensen KN, Hochwalt PC, Hocker TL, Roenigk RK, Brewer JD, Baum CL, et al. Comparison of MITF and melan-a immunohistochemistry during Mohs surgery for Lentigo Maligna-type melanoma in situ and Lentigo Maligna melanoma. Dermatologic Surg Off Publ Am Soc Dermatologic Surg. 2016;42(2):167–75.

    CAS  Google Scholar 

  125. Mu EW, Quatrano NA, Yagerman SE, Ratner D, Meehan SA. Evaluation of MITF, SOX10, MART-1, and R21 immunostaining for the diagnosis of residual melanoma in situ on chronically sun-damaged skin. Dermatologic Surg Off Publ Am Soc Dermatologic Surg. 2018;44(7):933–8.

    CAS  Google Scholar 

  126. Lezcano C, Jungbluth AA, Nehal KS, Hollmann TJ, Busam KJ. PRAME expression in melanocytic tumors. Am J Surg Pathol. 2018;42(11):1456–65.

    PubMed  PubMed Central  Google Scholar 

  127. Danga ME, Yaar R, Bhawan J. Melan-A positive dermal cells in malignant melanoma in situ. J Cutan Pathol. 2015;42(6):388–93.

    PubMed  Google Scholar 

  128. Suchak R, Hameed OA, Robson A. Evaluation of the role of routine melan-A immunohistochemistry for exclusion of microinvasion in 120 cases of lentigo maligna. Am J Dermatopathol. 2014;36(5):387–91.

    PubMed  Google Scholar 

  129. Magro CM, Neil Crowson A, Mihm MC. Unusual variants of malignant melanoma. Mod Pathol. 2006;19:41–70.

    Google Scholar 

  130. Schmoeckel C, Castro CE, Braun-Falco O. Nevoid malignant melanoma. Arch Dermatol Res. 1985;277(5):362–9.

    CAS  PubMed  Google Scholar 

  131. Suster S, Ronnen M, Bubis JJ. Verrucous pseudonevoid melanoma. J Surg Oncol. 1987;36(2):134–7.

    CAS  PubMed  Google Scholar 

  132. Blessing K, Grant JJH, Sanders DSA, Kennedy MM, Husain A, Coburn P. Small cell malignant melanoma: a variant of naevoid melanoma. Clinicopathological features and histological differential diagnosis. J Clin Pathol. 2000;53(8):591–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wong TY, Suster S, Duncan LM, Mihm MC. Nevoid melanoma: a clinicopathological study of seven cases of malignant melanoma mimicking spindle and epithelioid cell nevus and verrucous dermal nevus. Hum Pathol. 1995;26(2):171–9.

    CAS  PubMed  Google Scholar 

  134. McNutt NS, Urmacher C, Hakimian J, Hoss DM, Lugo J. Nevoid malignant melanoma: morphologic patterns and immunohistochemical reactivity. J Cutan Pathol. 1995;22(6):502–17.

    CAS  PubMed  Google Scholar 

  135. Zembowicz A, McCusker M, Chiarelli C, Dei Tos AP, Granter SR, Calonje E, et al. Morphological analysis of nevoid melanoma: a study of 20 cases with a review of the literature. Am J Dermatopathol. 2001;23(3):167–75.

    CAS  PubMed  Google Scholar 

  136. Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33(8):1146–56.

    PubMed  Google Scholar 

  137. Carlson JA, Dickersin GR, Sober AJ, Barnhill RL. Desmoplastic neurotropic melanoma. A clinicopathologic analysis of 28 cases. Cancer. 1995;75(2):478–94.

    CAS  PubMed  Google Scholar 

  138. Anstey A, McKee P, Jones EW. Desmoplastic malignant melanoma: a clinicopathological study of 25 cases. Br J Dermatol. 1993;129(4):359–71.

    CAS  PubMed  Google Scholar 

  139. Chen JY, Hruby G, Scolyer RA, Murali R, Hong A, FitzGerald P, et al. Desmoplastic neurotropic melanoma: a clinicopathologic analysis of 128 cases. Cancer. 2008;113(10):2770–8.

    PubMed  Google Scholar 

  140. Whitaker DC, Argenyi Z, Smith AC. Desmoplastic malignant melanoma: Rare and difficult to diagnose. J Am Acad Dermatol. 1992;26(5):704–9. https://doi.org/10.1016/0190-9622(92)70096-X.

    Article  CAS  PubMed  Google Scholar 

  141. Scolyer RA, Rawson RV, Gershenwald JE, Ferguson PM, Prieto VG. Melanoma pathology reporting and staging. Mod Pathol. 2020;33:15–24. https://doi.org/10.1038/s41379-019-0402-x.

    Article  PubMed  Google Scholar 

  142. Longacre TA, Egbert BM, Rouse RV. Desmoplastic and spindle-cell malignant melanoma. An immunohistochemical study. Am J Surg Pathol. 1996;20(12):1489–500.

    CAS  PubMed  Google Scholar 

  143. Robson A, Allen P, Hollowood K. S100 expression in cutaneous scars: a potential diagnostic pitfall in the diagnosis of desmoplastic melanoma. Histopathology. 2001;38(2):135–40.

    CAS  PubMed  Google Scholar 

  144. Ramos-Herberth FI, Karamchandani J, Kim J, Dadras SS. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. J Cutan Pathol. 2010;37(9):944–52.

    PubMed  Google Scholar 

  145. Plaza JA, Bonneau P, Prieto V, Sangueza M, MacKinnon A, Suster D, et al. Desmoplastic melanoma: an updated immunohistochemical analysis of 40 cases with a proposal for an additional panel of stains for diagnosis. J Cutan Pathol. 2016;43(4):313–23.

    PubMed  Google Scholar 

  146. Kiuru M, Patel RM, Busam KJ. Desmoplastic melanocytic nevi with lymphocytic aggregates. J Cutan Pathol. 2012;39(10):940–4.

    PubMed  Google Scholar 

  147. Sidiropoulos M, Sholl LM, Obregon R, Guitart J, Gerami P. Desmoplastic nevus of chronically sun-damaged skin: an entity to be distinguished from desmoplastic melanoma. Am J Dermatopathol. 2014;36(8):629–34.

    PubMed  Google Scholar 

  148. Carlson JA, Ross JS, Slominski AJ. New techniques in dermatopathology that help to diagnose and prognosticate melanoma. Clin Dermatol. 2009;27(1):75–102. https://doi.org/10.1016/j.clindermatol.2008.09.007.

    Article  PubMed  Google Scholar 

  149. Hawkins WG, Busam KJ, Ben-Porat L, Panageas KS, Coit DG, Gyorki DE, et al. Desmoplastic melanoma: a pathologically and clinically distinct form of cutaneous melanoma. Ann Surg Oncol. 2005;12(3):207–13.

    PubMed  Google Scholar 

  150. Quinn MJ, Crotty KA, Thompson JF, Coates AS, O’Brien CJ, McCarthy WH. Desmoplastic and desmoplastic neurotropic melanoma: experience with 280 patients. Cancer. 1998;83(6):1128–35.

    CAS  PubMed  Google Scholar 

  151. Livestro DP, Muzikansky A, Kaine EM, Flotte TJ, Sober AJ, Mihm MC, et al. Biology of desmoplastic melanoma: a case-control comparison with other melanomas. J Clin Oncol. 2005;23:6739–46.

    Google Scholar 

  152. Costa S, Byrne M, Pissaloux D, Haddad V. An update on clinicopathological, immunohistochemical, and molecular profiles of colloid carcinoma of the lung. Hum Pathol. 2016;40(3):368–77.

    Google Scholar 

  153. Gerami P, Pouryazdanparast P, Vemula S, Bastian BC. Molecular analysis of a case of nevus of ota showing progressive evolution to melanoma with intermediate stages resembling cellular blue nevus. Am J Dermatopathol. 2010;32(3):301–5.

    PubMed  Google Scholar 

  154. Hernandez F. Malignant Blue Nevus. Arch Dermatol. 1973;107:741–4.

    CAS  PubMed  Google Scholar 

  155. Ozgur F, Akyurek M, Kayikcioglu A, Barista I, Gokoz A. Metastatic malignant blue nevus: a case report. Ann Plast Surg. 1997;39(4):411–5.

    CAS  PubMed  Google Scholar 

  156. Biernat W, Kordek R, Arkuszewska C, Omulecki A, Woźniak L. Malignant blue nevus with neurosarcoma-like lymph node metastases. Pol J Pathol. 1995;46(1):51–4.

    CAS  PubMed  Google Scholar 

  157. Granter SR, McKee PH, Calonje E, Mihm MC, Busam K. Melanoma associated with blue nevus and melanoma mimicking cellular blue nevus: a clinicopathologic study of 10 cases on the spectrum of so-called “malignant blue nevus”. Am J Surg Pathol. 2001;25(3):316–23.

    CAS  PubMed  Google Scholar 

  158. Martin RCW, Murali R, Scolyer RA, Fitzgerald P, Colman MH, Thompson JF. So-called “malignant blue nevus”: a clinicopathologic study of 23 patients. Cancer. 2009;115(13):2949–55.

    PubMed  Google Scholar 

  159. Elder D, Massi D, Scolyer RA, Willemze R. WHO classification of skin tumours, vol. 11. 4th ed; 2018. p. 124–9.

    Google Scholar 

  160. Busam KJ. Metastatic melanoma to the skin simulating blue nevus. Am J Surg Pathol. 1999;23(3):276–82.

    CAS  PubMed  Google Scholar 

  161. Avidor I, Kessler E. ‘Atypical’ blue nevus - a benign variant of cellular blue nevus: presentation of three cases. Dermatology. 1977;154(1):39–44.

    CAS  Google Scholar 

  162. Tran TA, Carlson JA, Basaca PC, Mihm MC. Cellular blue nevus with atypia (atypical cellular blue nevus): a clinicopathologic study of nine cases. J Cutan Pathol. 1998;25(5):252–8.

    CAS  PubMed  Google Scholar 

  163. Temple-Camp CR, Saxe N, King H. Benign and malignant cellular blue nevus: a clinicopathological study of 30 cases. Am J Dermatopathol. 1988;10(4):289–96.

    CAS  PubMed  Google Scholar 

  164. Barnhill RL, Argenyi Z, Berwick M, Duray PH, Erickson L, Guitart J, et al. Atypical cellular blue nevi (cellular blue nevi with atypical features): lack of consensus for diagnosis and distinction from cellular blue nevi and malignant melanoma (“malignant blue nevus”). Am J Surg Pathol. 2008;32(1):36–44.

    PubMed  Google Scholar 

  165. Chan MP, Andea AA, Harms PW, Durham AB, Patel RM, Wang M, et al. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus. Mod Pathol. 2016;29(3):227–39.

    CAS  PubMed  Google Scholar 

  166. Held L, Eigentler TK, Metzler G, Leiter U, Messina JL, Glass LF, et al. Proliferative activity, chromosomal aberrations, and tumor-specific mutations in the differential diagnosis between blue nevi and melanoma. Am J Pathol. 2013;182(3):640–5. https://doi.org/10.1016/j.ajpath.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  167. Gammon B, Beilfuss B, Guitart J, Busam KJ, Gerami P. Fluorescence in situ hybridization for distinguishing cellular blue nevi from blue nevus-like melanoma. J Cutan Pathol. 2011;38(4):335–41.

    PubMed  Google Scholar 

  168. Wiesner T, He J, Yelensky R, Esteve-puig R, Botton T, Yeh I, et al. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas. Nat Commun. 2014;5:3116.

    PubMed  Google Scholar 

  169. Shen L, Cooper C, Bajaj S, Liu P, Pestova E, Guitart J, et al. Atypical spitz tumors with 6q23 deletions: a clinical, histological, and molecular study. Am J Dermatopathol. 2013;35(8):804–12.

    PubMed  Google Scholar 

  170. Lee S, Barnhill RL, Dummer R, Dalton J, Wu J, Pappo A, et al. TERT promoter mutations are predictive of aggressive clinical behavior in patients with spitzoid melanocytic neoplasms. Sci Rep. 2015;5:1120. https://doi.org/10.1038/srep11200.

    Article  CAS  Google Scholar 

  171. Yazdan P, Cooper C, Sholl LM, Busam K, Rademaker A, Weitner BB, et al. Comparative analysis of atypical Spitz tumors with heterozygous versus homozygous 9p21 deletions for clinical outcomes, histomorphology, BRAF mutation, and p16 expression. Am J Surg Pathol. 2014;38(5):638–45.

    PubMed  Google Scholar 

  172. Gerami P, Cooper C, Bajaj S, Wagner A, Fullen D, Busam K, et al. Outcomes of atypical spitz tumors with chromosomal copy number aberrations and conventional melanomas in children. Am J Surj Pathol. 2013;37(9):1387–94.

    Google Scholar 

  173. Wiesner T, Kutzner H, Cerroni L, Mihm MC, Busam KJ, Murali R. Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology. 2016;48(2):113–31.

    CAS  PubMed  Google Scholar 

  174. Harms KL, Lowe L, Fullen DR, Harms PW. Atypical spitz tumors a diagnostic challenge. Arch Pathol Lab Med. 2015;139(10):1263–70.

    PubMed  Google Scholar 

  175. Cho-Vega JH. A diagnostic algorithm for atypical spitzoid tumors: guidelines for immunohistochemical and molecular assessment. Mod Pathol. 2016;29:656–70. https://doi.org/10.1038/modpathol.2016.70.

    Article  PubMed  Google Scholar 

  176. Elder D, Massi D, Scolyer RA, Willemze R. WHO classification of skin tumours, vol. 11. 4th ed; 2018, 108 p

    Google Scholar 

  177. Requena C, Botella R, Nagore E, Sanmart O, Llombart B, Serra-guille C, et al. Characteristics of spitzoid melanoma and clues for differential diagnosis with spitz nevus. Am J Dermatopathol. 2012;34(5):478–86.

    PubMed  Google Scholar 

  178. Walsh N, Croi-ry K, Palmer A, Mccarthy S. Spitz nevus versus spitzoid malignant melanoma: an evaluation of the current distinguishing histopathologic criteria. Hum Pathol. 1998;29:1105–12.

    CAS  PubMed  Google Scholar 

  179. Busam K, Kutzner H, Cerroni L, Wiesner T. Clinical and pathologic findings of spitz nevi and atypical spitz tumors with ALK fusions. Am J Surg Pathol. 2014;38(7):925–33.

    PubMed  PubMed Central  Google Scholar 

  180. Yeh I, Busam KJ, McCalmont TH, LeBoit PE, Pissaloux D, Alberti L, et al. Filigree-like rete ridges, lobulated nests, rosette-like structures, and exaggerated maturation characterize spitz tumors with NTRK1 fusion. Am J Surg Pathol. 2019;43(6):737–46.

    PubMed  Google Scholar 

  181. Yeh I, de la Fouchardiere A, Pissaloux D, Mully TW, Garrido MC, Vemula SS, et al. Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am J Surg Pathol. 2015;39(5):581–91.

    PubMed  PubMed Central  Google Scholar 

  182. Hung T, Piris A, Lobo A, Mihm MC, Sober AJ, Tsao H, et al. Sentinel lymph node metastasis is not predictive of poor outcome in patients with problematic spitzoid melanocytic tumors. Hum Pathol. 2013;44(1):87–94. https://doi.org/10.1016/j.humpath.2012.04.019.

    Article  PubMed  Google Scholar 

  183. Lohmann CM, Coit DG, Brady MS, Berwick M, Ph D, Busam KJ. Sentinel lymph node biopsy in patients with diagnostically controversial spitzoid melanocytic tumors. Am J Surj Pathol. 2002;26(1):47–55.

    Google Scholar 

  184. Ackley CD, Prieto VG, Bentley RC, Horenstein MG, Seigler HF, Shea CR. Primary chondroid melanoma. J Cutan Pathol. 2001;28(9):482–5.

    CAS  PubMed  Google Scholar 

  185. Sarode VR, Joshi K, Ravichandran P, Das R. Myxoid variant of primary cutaneous malignant melanoma. Histopathology. 1992;20(2):186–7.

    CAS  PubMed  Google Scholar 

  186. Prieto VG, Kanik A, Salob S, McNutt NS. Primary cutaneous myxoid melanoma: Immunohistologic clues to a difficult diagnosis. J Am Acad Dermatol. 1994;30(2):335–9. https://doi.org/10.1016/S0190-9622(94)70035-4.

    Article  CAS  PubMed  Google Scholar 

  187. Nakagawa H, Imakado S, Nogita T, Ishibashi Y. Osteosarcomatous changes in malignant melanoma. Immunohistochemical and ultrastructural studies of a case. Am J Dermatopathol. 1990;12(2):162–8.

    CAS  PubMed  Google Scholar 

  188. Borek BT, McKee PH, Freeman JA, Maguire B, Brander WL, Calonje E. Primary malignant melanoma with rhabdoid features: a histologic and immunocytochemical study of three cases. Am J Dermatopathol. 1998;20(2):123–7.

    CAS  PubMed  Google Scholar 

  189. Bonetti F, Colombari R, Zamboni G, Chilosi M. Signet ring melanoma, S-100 negative. Am J Surg Pathol. 1989;13(6):522–6.

    CAS  PubMed  Google Scholar 

  190. Jalas JR, Vemula S, Bezrookove V, Leboit PE, Simko JP, Bastian BC. Metastatic melanoma with striking adenocarcinomatous differentiation illustrating phenotypic plasticity in melanoma. Am J Surg Pathol. 2011;35(9):1413–8.

    PubMed  PubMed Central  Google Scholar 

  191. Tarlow MM, Nemlick AS, Rothenberg J, Schwartz RA. Pseudoglandular-type melanoma: a rare melanoma variant. J Cutan Pathol. 2008;35(6):588–90.

    PubMed  Google Scholar 

  192. Zembowicz A, Kafanas A. Syringotropic melanoma: a variant of melanoma with prominent involvement of eccrine apparatus and risk of deep dermal invasion. Am J Dermatopathol. 2012;34(2):151–6.

    PubMed  Google Scholar 

  193. Azzola MF, Shaw HM, Thompson JF, Soong S-J, Scolyer RA, Watson GF, et al. Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma: an analysis of 3661 patients from a single center. Cancer. 2003;97(6):1488–98.

    PubMed  Google Scholar 

  194. Scolyer RA, Judge MJ, Evans A, Frishberg DP, Prieto VG, Thompson JF, et al. Data set for pathology reporting of cutaneous invasive melanoma: recommendations from the international collaboration on cancer reporting (ICCR). Am J Surg Pathol. 2013;37(12):1797–814.

    PubMed  PubMed Central  Google Scholar 

  195. Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172(5):902–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Moon HR, Kang HJ, Won CH, Chang SE, Lee MW, Choi JH, et al. Heterogeneous spectrum of acral melanoma: a clinicoprognostic study of 213 acral melanomas according to tumor site. J Am Acad Dermatol. 2018;78(1):179–182.e3. https://doi.org/10.1016/j.jaad.2017.07.029.

    Article  PubMed  Google Scholar 

  197. Dodds TJ, Lo S, Jackett L, Nieweg O, Thompson JF, Scolyer RA. Prognostic significance of periadnexal extension in cutaneous melanoma and its implications for pathologic reporting and staging. Am J Surg Pathol. 2018;42(3):359–66.

    PubMed  Google Scholar 

  198. Rashed H, Flatman K, Bamford M, Teo KW, Saldanha G. Breslow density is a novel prognostic feature in cutaneous malignant melanoma. Histopathology. 2017;70(2):264–72.

    PubMed  Google Scholar 

  199. Saldanha G, Yarrow J, Elsheikh S, O’Riordan M, Uraiby H, Bamford M. Development and initial validation of calculated tumor area as a prognostic tool in cutaneous malignant melanoma. JAMA Dermatol. 2019;155(8):890–8.

    PubMed  PubMed Central  Google Scholar 

  200. Scolyer RA, Shaw HM, Thompson JF, Li L-XL, Colman MH, Lo SK, et al. Interobserver reproducibility of histopathologic prognostic variables in primary cutaneous melanomas. Am J Surg Pathol. 2003;27(12):1571–6.

    PubMed  Google Scholar 

  201. Grande Sarpa H, Reinke K, Shaikh L, Leong SPL, Miller JR, Sagebiel RW, et al. Prognostic significance of nuclear receptor coactivator-3 overexpression in primary cutaneous melanoma. Am J Surg Pathol. 2006;30(11):1396–400.

    PubMed  Google Scholar 

  202. In’T Hout FEM, Haydu LE, Murali R, Bonenkamp JJ, Thompson JF, Scolyer RA. Prognostic importance of the extent of ulceration in patients with clinically localized cutaneous melanoma. Ann Surg. 2012;255(6):1165–70.

    Google Scholar 

  203. Tetzlaff MT, Torres-Cabala CA, Penvadee, Pattanaprichakul P, Rapini RP, Prieto VG, et al. Emerging clinical applications of selected biomarkers in melanoma. Clin Cosmet Investig Dermatol. 2015;8:35–46.

    PubMed  PubMed Central  Google Scholar 

  204. Cook MG, Spatz A, Bröcker EB, Ruiter DJ. Identification of histological features associated with metastatic potential in thin (<1.0 mm) cutaneous melanoma with metastases. A study on behalf of the EORTC Melanoma Group. J Pathol. 2002;197(2):188–93.

    PubMed  Google Scholar 

  205. Gualano MR, Osella-Abate S, Scaioli G, Marra E, Bert F, Faure E, et al. Prognostic role of histological regression in primary cutaneous melanoma: a systematic review and meta-analysis. Br J Dermatol. 2018;178:357–62.

    Google Scholar 

  206. Aung PP, Nagarajan P, Prieto VG. Regression in primary cutaneous melanoma: etiopathogenesis and clinical significance. Lab Investig. 2017;97(6):657–68. https://doi.org/10.1038/labinvest.2017.8.

    Article  Google Scholar 

  207. Clemente CG, Mihm MC, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303–10.

    CAS  PubMed  Google Scholar 

  208. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 2012;30(21):2678–83.

    PubMed  Google Scholar 

  209. Schatton T, Scolyer RA, Thompson JF, Mihm MC. Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol. 2014;1102:45–69. https://doi.org/10.1007/978-1-62703-727-3.

    Article  Google Scholar 

  210. Saldanha G, Flatman K, Teo KW, Bamford M. A novel numerical scoring system for melanoma tumor-infiltrating lymphocytes has better prognostic value than standard scoring. Am J Surg Pathol. 2017;00(00):1–9.

    Google Scholar 

  211. Yun SJ, Gimotty PA, Hwang W. High lymphatic vessel density and lymphatic invasion underlie the adverse prognostic effect of radial growth phase. Am J Surg Pathol. 2011;35(2):235–42.

    PubMed  PubMed Central  Google Scholar 

  212. Xu X, Chen L, Guerry DP, Dawson PR, Hwang WT, VanBelle P, et al. Lymphatic invasion is independently prognostic of metastasis in primary cutaneous melanoma. Clin Cancer Res. 2012;18(1):229–37.

    PubMed  Google Scholar 

  213. Kashani-Sabet M, Sagebiel RW, Ferreira CMM, Nosrati M, Miller JR. Vascular involvement in the prognosis of primary cutaneous melanoma. Arch Dermatol. 2001;137(9):1169–73.

    CAS  PubMed  Google Scholar 

  214. Feldmeyer L, Teztlaff M, Fox P, Nagarajan P. Prognostic implication of lymphovascular invasion detected by double immunostaining for D-40 and MITF1 in primary cutaneous melanoma. Am J Dermatopathol. 2015;0:709.

    Google Scholar 

  215. Petersson F, Diwan AH, Ivan D, Gershenwald JE, Johnson MM, Harrell R, et al. Immunohistochemical detection of lymphovascular invasion with D2-40 in melanoma correlates with sentinel lymph node status, metastasis and survival. J Cutan Pathol. 2009;36(11):1157–63.

    PubMed  Google Scholar 

  216. Day CL, Harrist TJ, Gorstein F, Sober AJ, Lew RA, Friedman RJ, Pasternack BS, Kopf AW, Fitzpatrick TB, Mihm MC. Malignant melanoma. Prognostic significance of “microscopic satellites” in the reticular dermis and subcutaneous fat. Ann Surg. 1981;194:108–12. https://doi.org/10.1097/00000658-198107000-00019.

    Article  PubMed  PubMed Central  Google Scholar 

  217. León P, Daly JM, Synnestvedt M, Schultz DJ, Elder DE, Clark WH. The prognostic implications of microscopic satellites in patients with clinical stage I melanoma. Arch Surg. 1991;126:1461–8. https://doi.org/10.1001/archsurg.1991.01410360031006.

    Article  PubMed  Google Scholar 

  218. https://www.rcpath.org/uploads/assets/fb177728-072d-4b8a-97ae94319eaac5fd/Dataset-for-the-histological-reporting-of-primary-cutaneous-malignant-melanoma-and-regional-lymph-nodes.pdf.

  219. Pasquali S, Haydu LE, Scolyer RA, Winstanley JB, Spillane AJ, Quinn MJ, et al. The importance of adequate primary tumor excision margins and sentinel node biopsy in achieving optimal locoregional control for patients with thick primary melanomas. Ann Surg. 2013;258(1):152–7.

    PubMed  Google Scholar 

  220. Heenan PJ. Local recurrence of melanoma. Pathology. 2004;36(5):491–5.

    CAS  PubMed  Google Scholar 

  221. Wheatley K, Wilson JS, Gaunt P, Marsden JR. Surgical excision margins in primary cutaneous melanoma: a meta-analysis and Bayesian probability evaluation. Cancer Treat Rev. 2016;42:73–81. https://doi.org/10.1016/j.ctrv.2015.10.013.

    Article  PubMed  Google Scholar 

  222. McGinnis KS, Lessin SR, Elder DE, Guerry D 4th, Schuchter L, Ming M, et al. Pathology review of cases presenting to a multidisciplinary pigmented lesion clinic. Arch Dermatol. 2002;138(5):617–21.

    PubMed  Google Scholar 

  223. Emanuel PO, Andea AA, Vidal CI, Missall TA, Novoa RA, Bohlke AK, et al. Evidence behind the use of molecular tests in melanocytic lesions and practice patterns of these tests by dermatopathologists. J Cutan Pathol. 2018;45(11):839–46.

    PubMed  Google Scholar 

  224. North JP, Vetto JT, Murali R, White KP, White CR, Bastian BC. Assessment of copy number status of chromosomes 6 and 11 by FISH provides independent prognostic information in primary melanoma. Am J Surg Pathol. 2011;35(8):1146–50.

    PubMed  PubMed Central  Google Scholar 

  225. Hirsch D, Kemmerling R, Davis S, Camps J, Meltzer PS, Ried T, et al. Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res. 2013;73(5):1454–60.

    CAS  PubMed  Google Scholar 

  226. Gerami P, Jewell SS, Pouryazdanparast P, Wayne JD, Haghighat Z, Busam KJ, et al. Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn. 2011;13(3):352–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Gerami P, Li G, Pouryazdanparast P, Blondin B, Beilfuss B, Slenk C, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36(6):808–17.

    PubMed  Google Scholar 

  228. Gerami P, Busam K, Cochran A, Cook MG, Duncan LM, Elder DE, et al. Histomorphologic assessment and interobserver diagnostic reproducibility of atypical spitzoid melanocytic neoplasms with long-term follow-up. Am J Surg Pathol. 2014;38(7):934–40.

    PubMed  Google Scholar 

  229. North JP, Garrido MC, Kolaitis NA, Leboit PE, Mccalmont TH, Bastian BC. Fluorescence in situ hybridization as an ancillary tool in the diagnosis of ambiguous melanocytic neoplasms: a review of 804 cases. Am J Surg Pathol. 2014;38(6):824–31.

    PubMed  Google Scholar 

  230. Gaiser T, Kutzner H, Palmedo G, Siegelin MD, Wiesner T, Bruckner T, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23(3):413–9.

    CAS  PubMed  Google Scholar 

  231. Ferrara G, De Vanna AC. Fluorescence in situ hybridization for melanoma diagnosis: a review and a reappraisal. Am J Dermatopathol. 2016;38(4):253–69.

    PubMed  Google Scholar 

  232. Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am J Surg Pathol. 2001;25(2):205–11.

    CAS  PubMed  Google Scholar 

  233. Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.

    PubMed  Google Scholar 

  234. Ohsie SJ, Sarantopoulos GP, Cochran AJ, Binder SW. Immunohistochemical characteristics of melanoma. J Cutan Pathol. 2008;35(5):433–44.

    PubMed  Google Scholar 

  235. Gajjar NA, Cochran AJ, Binder SW. Is MAGE-1 expression in metastatic malignant melanomas really helpful? Am J Surg Pathol. 2004;28(7):883–8.

    PubMed  Google Scholar 

  236. Granter SR, Weilbaecher KN, Quigley C, Fisher DE. Role for microphthalmia transcription factor in the diagnosis of metastatic malignant melanoma. Appl Immunohistochem Mol Morphol. 2002;10(1):47–51.

    PubMed  Google Scholar 

  237. Trefzer U, Rietz N, Chen Y, Audring H, Herberth G, Siegel P, et al. SM5-1: a new monoclonal antibody which is highly sensitive and specific for melanocytic lesions. Arch Dermatol Res. 2000;292(12):583–9.

    CAS  PubMed  Google Scholar 

  238. Kaufmann O, Koch S, Burghardt J, Audring H, Dietel M. Tyrosinase, melan-A, and KBA62 as markers for the immunohistochemical identification of metastatic amelanotic melanomas on paraffin sections. Mod Pathol. 1998;11(8):740–6.

    CAS  PubMed  Google Scholar 

  239. Ordóñez NG, Ji XL, Hickey RC. Comparison of HMB-45 monoclonal antibody and S-100 protein in the immunohistochemical diagnosis of melanoma. Am J Clin Pathol. 1988;90(4):385–90.

    PubMed  Google Scholar 

  240. Gaynor R, Irie R, Morton D, Herschman HR. S100 protein is present in cultured human malignant melanomas. Nature. 1980;286(5771):400–1.

    CAS  PubMed  Google Scholar 

  241. Cochran AJ, Wen DR. S-100 protein as a marker for melanocytic and other tumours. Pathology. 1985;17(2):340–5.

    CAS  PubMed  Google Scholar 

  242. Orchard GE. Comparison of immunohistochemical labelling of melanocyte differentiation antibodies melan-a, tyrosinase and HMB 45 with NKIC3 and S100 protein in the evaluation of benign naevi and malignant melanoma. Histochem J. 2000;32(8):475–81.

    CAS  PubMed  Google Scholar 

  243. Wick MR, Swanson PE, Rocamora A. Recognition of malignant melanoma by monoclonal antibody HMB-45. An immunohistochemical study of 200 paraffin-embedded cutaneous tumors. J Cutan Pathol. 1988;15(4):201–7.

    CAS  PubMed  Google Scholar 

  244. Prieto VG, Shea CR. Immunohistochemistry of melanocytic proliferations. Arch Pathol Lab Med. 2011;135(7):853–9.

    PubMed  Google Scholar 

  245. Reinke S, Königer P, Herberth G, Audring H, Wang H, Ma J, et al. Differential expression of MART-1, tyrosinase, and SM5-1 in primary and metastatic melanoma. Am J Dermatopathol. 2005;27(5):401–6.

    PubMed  Google Scholar 

  246. Rochaix P, Lacroix-Triki M, Lamant L, Pichereaux C, Valmary S, Puente E, et al. PNL2, a new monoclonal antibody directed against a fixative-resistant melanocyte antigen. Mod Pathol. 2003;16(5):481–90.

    PubMed  Google Scholar 

  247. Ordóñez NG. Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol. 2014;45(2):191–205.

    PubMed  Google Scholar 

  248. King R, Weilbaecher KN, McGill G, Cooley E, Mihm M, Fisher DE. Microphthalmia transcription factor. A sensitive and specific melanocyte marker for MelanomaDiagnosis. Am J Pathol. 1999;155(3):731–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Busam KJ, Iversen K, Coplan KC, Jungbluth AA. Analysis of microphthalmia transcription factor expression in normal tissues and tumors, and comparison of its expression with S-100 protein, gp100, and tyrosinase in desmoplastic malignant melanoma. Am J Surg Pathol. 2001;25(2):197–204.

    CAS  PubMed  Google Scholar 

  250. Busam KJ, Kucukgöl D, Sato E, Frosina D, Teruya-Feldstein J, Jungbluth AA. Immunohistochemical analysis of novel monoclonal antibody PNL2 and comparison with other melanocyte differentiation markers. Am J Surg Pathol. 2005;29(3):400–6.

    PubMed  Google Scholar 

  251. Hofbauer GFL, Kamarashev J, Geertsen R, Böni R, Dummer R. Tyrosinase immunoreactivity in formalin-fixed, paraffin-embedded primary and metastatic melanoma: frequency and distribution. J Cutan Pathol. 1998;25(4):204–9. https://doi.org/10.1111/j.1600-0560.1998.tb01720.x.

    Article  CAS  PubMed  Google Scholar 

  252. Agnarsdóttir M, Sooman L, Bolander Å, Strömberg S, Rexhepaj E, Bergqvist M, et al. SOX10 expression in superficial spreading and nodular malignant melanomas. Melanoma Res. 2010;20(6):468–78.

    PubMed  Google Scholar 

  253. Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506–10.

    CAS  PubMed  Google Scholar 

  254. Tacha D, Yu C. An immunohistochemical comparison study of SOX10, pan melanoma cocktail and S100 in malignant melanoma. Biocare Med. 2012;100(Figure 4):1–4. www.biocare.net

    Google Scholar 

  255. Gaspard M, Lamant L, Tournier E, Valentin T, Rochaix P, Terrier P, et al. Evaluation of eight melanocytic and neural crest-associated markers in a well-characterised series of 124 malignant peripheral nerve sheath tumours (MPNST): useful to distinguish MPNST from melanoma? Histopathology. 2018;73(6):969–82.

    PubMed  Google Scholar 

  256. Chiu K, Ionescu DN, Hayes M. SOX10 expression in mammary invasive ductal carcinomas and benign breast tissue. Virchows Arch. 2019;474(6):667–72.

    CAS  PubMed  Google Scholar 

  257. Ladstein RG, Bachmann IM, Straume O, Akslen LA. Prognostic importance of the mitotic marker phosphohistone H3 in cutaneous nodular melanoma. J Invest Dermatol. 2012;132(4):1247–52.

    CAS  PubMed  Google Scholar 

  258. Tetzlaff MT, Curry JL, Ivan D, Wang WL, Torres-Cabala CA, Bassett RL, et al. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma. Mod Pathol. 2013;26(9):1153–60.

    CAS  PubMed  Google Scholar 

  259. Ikenberg K, Pfaltz M, Rakozy C, Kempf W. Immunohistochemical dual staining as an adjunct in assessment of mitotic activity in melanoma. J Cutan Pathol. 2012;39(3):324–30.

    PubMed  Google Scholar 

  260. Al Dhaybi R, Agoumi M, Gagné I, McCuaig C, Powell J, Kokta V. P16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. J Am Acad Dermatol. 2011;65(2):357–63.

    PubMed  Google Scholar 

  261. Wiedemeyer K, Guadagno A, Davey J, Brenn T. Acral spitz nevi: clinicopathologic study of 50 cases with immunohistochemical analysis of P16 and P21 expression. Am J Surg Pathol. 2018;42(6):821–7.

    PubMed  Google Scholar 

  262. Horst BA, Terrano D, Fang Y, Silvers DN, Busam KJ. 9p21 gene locus in Spitz nevi of older individuals: absence of cytogenetic and immunohistochemical findings associated with malignancy. Hum Pathol. 2013;44(12):2822–8.

    CAS  PubMed  Google Scholar 

  263. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.

    PubMed  Google Scholar 

  264. Bennett DC. Human melanocyte senescence and melanoma susceptibility genes. Oncogene. 2003;22:3063–9.

    Google Scholar 

  265. Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, Van Der Horst CMAM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.

    CAS  PubMed  Google Scholar 

  266. Hilliard NJ, Krahl D, Sellheyer K. P16 expression differentiates between desmoplastic Spitz nevus and desmoplastic melanoma. J Cutan Pathol. 2009;36(7):753–9.

    PubMed  Google Scholar 

  267. Blokhin E, Pulitzer M, Busam KJ. Immunohistochemical expression of p16 in desmoplastic melanoma. J Cutan Pathol. 2013;40(9):796–800.

    PubMed  Google Scholar 

  268. Koh SS, Cassarino DS. Immunohistochemical expression of p16 in melanocytic lesions: an updated review and meta-analysis. Arch Pathol Lab Med. 2018;142(7):815–28.

    CAS  PubMed  Google Scholar 

  269. Uguen A, Talagas M, Costa S, Duigou S, Bouvier S, De Braekeleer M, et al. A p16-Ki-67-HMB45 immunohistochemistry scoring system as an ancillary diagnostic tool in the diagnosis of melanoma. Diagn Pathol. 2015;10(1):1–10. https://doi.org/10.1186/s13000-015-0431-9.

    Article  CAS  Google Scholar 

  270. Garola R, Singh V. Utility of p16-Ki-67-HMB45 score in sorting benign from malignant Spitz tumors. Pathol Res Pract. 2019;215(10):152550. https://doi.org/10.1016/j.prp.2019.152550.

    Article  CAS  PubMed  Google Scholar 

  271. Long E, Ilie M, Lassalle S, Butori C, Poissonnet G, Washetine K, et al. Why and how immunohistochemistry should now be used to screen for the BRAFV600E status in metastatic melanoma? The experience of a single institution (LCEP, Nice, France). J Eur Acad Dermatol Venereol. 2015;29:2436–43.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Willsmore, Z., Robson, A. (2021). The Histopathology of Melanocytic Nevi and Malignant Melanoma. In: Alani, R.M., Sahni, D. (eds) Melanoma in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-82639-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82639-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82638-3

  • Online ISBN: 978-3-030-82639-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics