Skip to main content

Immunopathogenesis of Celiac Disease

  • Chapter
  • First Online:
Advances in Celiac Disease

Abstract

Celiac disease (CD) is a systemic disorder with an immunological basis caused by an abnormal immune response to cereal gluten proteins, affecting to genetically susceptible individuals. The interaction of genetic and environmental factors leads to the loss of tolerance to these proteins and the development of an intestinal lesion characterized by lymphocyte infiltration, mucosal remodelling and epithelial destruction. The disease is now considered a model of autoimmunity driven by an environmental antigen from the diet. Gluten proteins are partially hydrolysed in the intestine forming large peptides which cross the epithelium and are translocated to the lamina propria, where an adaptive immune response is activated following the recognition by gluten-reactive CD4 + T cells of deamidated gluten T-cell epitopes bound to HLA-DQ molecules in the membrane of antigen presenting cells. Lamina propria CD4 T cells express a distinct phenotype and represents a small percentage of the total T cells, persisting for decades. Upon activation, these cells release a cytokine profile characterized by interferon (IFN)-γ and interleukin- (IL)-21 and provide help to B cells to produce antibodies to gluten and tissue transglutaminase (TG2). Moreover, they also control another hallmark of the disease, the infiltration of cytotoxic intraepithelial T CD8 + lymphocytes with activating NK receptors, which recognize stress-induced ligands expressed on epithelial cells and are involved in HLA-DQ2 independent tissue destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mowat AM. To respond or not to respond - a personal perspective of intestinal tolerance. Nat Rev Immunol junio de. 2018;18(6):405–15.

    Article  CAS  Google Scholar 

  2. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol mayo de. 2012;5(3):232–9.

    Article  CAS  Google Scholar 

  3. Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot abril de. 2002;53(370):947–58.

    Article  CAS  Google Scholar 

  4. Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci. mayo de 2009;1165:195–205.

    Google Scholar 

  5. Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol. octubre de 2002;283(4):G996–1003.

    Google Scholar 

  6. Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 27 de septiembre de 2002;297(5590):2275–9.

    Google Scholar 

  7. Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut febrero de. 2003;52(2):218–23.

    Article  CAS  Google Scholar 

  8. Schumann M, Siegmund B, Schulzke JD, Fromm M. Celiac disease: role of the epithelial barrier. Cell Mol Gastroenterol Hepatol marzo de. 2017;3(2):150–62.

    Article  Google Scholar 

  9. Schumann M, Richter JF, Wedell I, Moos V, Zimmermann-Kordmann M, Schneider T, et al. Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut junio de. 2008;57(6):747–54.

    Article  CAS  Google Scholar 

  10. Zimmer K-P, Fischer I, Mothes T, Weissen-Plenz G, Schmitz M, Wieser H, et al. Endocytotic segregation of gliadin peptide 31–49 in enterocytes. Gut marzo de. 2010;59(3):300–10.

    Article  CAS  Google Scholar 

  11. Luciani A, Villella VR, Vasaturo A, Giardino I, Pettoello-Mantovani M, Guido S, et al. Lysosomal accumulation of gliadin p31–43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa. Gut marzo de. 2010;59(3):311–9.

    Article  Google Scholar 

  12. Ménard S, Lebreton C, Schumann M, Matysiak-Budnik T, Dugave C, Bouhnik Y, et al. Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol febrero de. 2012;180(2):608–15.

    Article  Google Scholar 

  13. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Ménard S, Candalh C, et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med. 21 de enero de 2008;205(1):143–54.

    Google Scholar 

  14. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology julio de. 2008;135(1):194-204.e3.

    Article  CAS  Google Scholar 

  15. Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol. 2011;29:493–525.

    Article  PubMed  CAS  Google Scholar 

  16. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 8 de junio de 2012;336(6086):1268–73.

    Google Scholar 

  17. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol julio de. 2013;14(7):676–84.

    Article  CAS  Google Scholar 

  18. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 21 de junio de 2016;15(12):2809–24.

    Google Scholar 

  19. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol marzo de. 2009;62(3):264–9.

    Article  CAS  Google Scholar 

  20. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 24 de febrero de 2010;10:63.

    Google Scholar 

  21. D’Argenio V, Casaburi G, Precone V, Pagliuca C, Colicchio R, Sarnataro D, et al. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens Strain in duodenum of adult celiac patients. Am J Gastroenterol. junio de 2016;111(6):879–90.

    Google Scholar 

  22. Heyman M, Abed J, Lebreton C, Cerf-Bensussan N. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut septiembre de. 2012;61(9):1355–64.

    CAS  Google Scholar 

  23. Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology octubre de. 2016;151(4):670–83.

    Article  CAS  Google Scholar 

  24. Caminero A, McCarville JL, Galipeau HJ, Deraison C, Bernier SP, Constante M, et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat Commun. 13 de marzo de 2019;10(1):1198.

    Google Scholar 

  25. Zhou L, Kooy-Winkelaar YMC, Cordfunke RA, Dragan I, Thompson A, Drijfhout JW, et al. Abrogation of Immunogenic Properties of Gliadin Peptides through Transamidation by Microbial Transglutaminase Is Acyl-Acceptor Dependent. J Agric Food Chem. 30 de agosto de 2017;65(34):7542–52.

    Google Scholar 

  26. Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol octubre de. 2006;101(10):2333–40.

    Article  CAS  Google Scholar 

  27. Troncone R, Auricchio S. Rotavirus and celiac disease: clues to the pathogenesis and perspectives on prevention. J Pediatr Gastroenterol Nutr mayo de. 2007;44(5):527–8.

    Article  Google Scholar 

  28. Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol abril de. 2013;13(4):294–302.

    Article  CAS  Google Scholar 

  29. Monteleone G, Pender SL, Alstead E, Hauer AC, Lionetti P, McKenzie C, et al. Role of interferon alpha in promoting T helper cell type 1 responses in the small intestine in coeliac disease. Gut marzo de. 2001;48(3):425–9.

    Article  CAS  Google Scholar 

  30. Cammarota G, Cuoco L, Cianci R, Pandolfi F, Gasbarrini G. Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet. 28 de octubre de 2000;356(9240):1494–5.

    Google Scholar 

  31. Di Sabatino A, Pickard KM, Gordon JN, Salvati V, Mazzarella G, Beattie RM, et al. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology octubre de. 2007;133(4):1175–87.

    Article  Google Scholar 

  32. Tai JH, Williams JV, Edwards KM, Wright PF, Crowe JE, Dermody TS. Prevalence of reovirus-specific antibodies in young children in Nashville, Tennessee. J Infect Dis. 15 de abril de 2005;191(8):1221–4.

    Google Scholar 

  33. Bouziat R, Biering SB, Kouame E, Sangani KA, Kang S, Ernest JD, et al. Murine Norovirus Infection Induces TH1 Inflammatory Responses to Dietary Antigens. Cell Host Microbe. 14 de noviembre de 2018;24(5):677–688.e5.

    Google Scholar 

  34. Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 7 de abril de 2017;356(6333):44–50.

    Google Scholar 

  35. Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, et al. Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med. 1 de julio de 1993;178(1):187–96.

    Google Scholar 

  36. Sollid LM, Qiao S-W, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics junio de. 2012;64(6):455–60.

    Article  Google Scholar 

  37. Sollid LM, Tye-Din JA, Qiao S-W, Anderson RP, Gianfrani C, Koning F. Update 2020: nomenclature and listing of celiac disease-relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics febrero de. 2020;72(1–2):85–8.

    Article  Google Scholar 

  38. du Pré MF, Sollid LM. T-cell and B-cell immunity in celiac disease. Best Pract Res Clin Gastroenterol. junio de 2015;29(3):413–23.

    Google Scholar 

  39. Dørum S, Arntzen MØ, Qiao S-W, Holm A, Koehler CJ, Thiede B, et al. The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes. PLoS One. 19 de noviembre de 2010;5(11):e14056.

    Google Scholar 

  40. Dørum S, Qiao S-W, Sollid LM, Fleckenstein B. A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. J Proteome Res abril de. 2009;8(4):1748–55.

    Article  Google Scholar 

  41. Vader LW, de Ru A, van der Wal Y, Kooy YMC, Benckhuijsen W, Mearin ML, et al. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med. 4 de marzo de 2002;195(5):643–9.

    Google Scholar 

  42. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med julio de. 1997;3(7):797–801.

    Article  CAS  Google Scholar 

  43. van de Wal Y, Kooy Y, van Veelen P, Peña S, Mearin L, Papadopoulos G, et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol. 15 de agosto de 1998;161(4):1585–8.

    Google Scholar 

  44. Molberg O, Mcadam SN, Körner R, Quarsten H, Kristiansen C, Madsen L, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med junio de. 1998;4(6):713–7.

    Article  CAS  Google Scholar 

  45. Arentz-Hansen H, Körner R, Molberg O, Quarsten H, Vader W, Kooy YM, et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med. 21 de febrero de 2000;191(4):603–12.

    Google Scholar 

  46. Iversen R, Roy B, Stamnaes J, Høydahl LS, Hnida K, Neumann RS, et al. Efficient T cell-B cell collaboration guides autoantibody epitope bias and onset of celiac disease. Proc Natl Acad Sci U S A. 23 de julio de 2019;116(30):15134–9.

    Google Scholar 

  47. Thomazy VA, Vega F, Medeiros LJ, Davies PJ, Jones D. Phenotypic modulation of the stromal reticular network in normal and neoplastic lymph nodes: tissue transglutaminase reveals coordinate regulation of multiple cell types. Am J Pathol julio de. 2003;163(1):165–74.

    Article  CAS  Google Scholar 

  48. Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, et al. Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One. 26 de marzo de 2008;3(3):e1861.

    Google Scholar 

  49. Zanoni G, Navone R, Lunardi C, Tridente G, Bason C, Sivori S, et al. In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med. septiembre de 2006;3(9):e358.

    Google Scholar 

  50. Diraimondo TR, Klöck C, Khosla C. Interferon-γ activates transglutaminase 2 via a phosphatidylinositol-3-kinase-dependent pathway: implications for celiac sprue therapy. J Pharmacol Exp Ther abril de. 2012;341(1):104–14.

    Article  CAS  Google Scholar 

  51. Lebreton C, Ménard S, Abed J, Moura IC, Coppo R, Dugave C, et al. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology septiembre de. 2012;143(3):698-707.e4.

    Article  CAS  Google Scholar 

  52. Johansen BH, Vartdal F, Eriksen JA, Thorsby E, Sollid LM. Identification of a putative motif for binding of peptides to HLA-DQ2. Int Immunol febrero de. 1996;8(2):177–82.

    Article  CAS  Google Scholar 

  53. Tollefsen S, Arentz-Hansen H, Fleckenstein B, Molberg O, Ráki M, Kwok WW, et al. HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest agosto de. 2006;116(8):2226–36.

    Article  CAS  Google Scholar 

  54. Sjöström H, Lundin KE, Molberg O, Körner R, McAdam SN, Anthonsen D, et al. Identification of a gliadin T-cell epitope in coeliac disease: general importance of gliadin deamidation for intestinal T-cell recognition. Scand J Immunol agosto de. 1998;48(2):111–5.

    Article  Google Scholar 

  55. Kim C-Y, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A. 23 de marzo de 2004;101(12):4175–9.

    Google Scholar 

  56. Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med. 21 de julio de 2010;2(41):41ra51.

    Google Scholar 

  57. Nilsen EM, Jahnsen FL, Lundin KE, Johansen FE, Fausa O, Sollid LM, et al. Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology septiembre de. 1998;115(3):551–63.

    Article  CAS  Google Scholar 

  58. Fina D, Sarra M, Caruso R, Del Vecchio BG, Pallone F, MacDonald TT, et al. Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut julio de. 2008;57(7):887–92.

    Article  CAS  Google Scholar 

  59. Bodd M, Ráki M, Tollefsen S, Fallang LE, Bergseng E, Lundin KEA, et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol noviembre de. 2010;3(6):594–601.

    Article  CAS  Google Scholar 

  60. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature. 10 de marzo de 2011;471(7337):220–4.

    Google Scholar 

  61. Salvati VM, MacDonald TT, Bajaj-Elliott M, Borrelli M, Staiano A, Auricchio S, et al. Interleukin 18 and associated markers of T helper cell type 1 activity in coeliac disease. Gut febrero de. 2002;50(2):186–90.

    Article  CAS  Google Scholar 

  62. van Bergen J, Mulder CJ, Mearin ML, Koning F. Local communication among mucosal immune cells in patients with celiac disease. Gastroenterology mayo de. 2015;148(6):1187–94.

    Article  Google Scholar 

  63. Korneychuk N, Meresse B, Cerf-Bensussan N. Lessons from rodent models in celiac disease. Mucosal Immunol enero de. 2015;8(1):18–28.

    Article  CAS  Google Scholar 

  64. Kooy-Winkelaar YMC, Bouwer D, Janssen GMC, Thompson A, Brugman MH, Schmitz F, et al. CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes. Proc Natl Acad Sci U S A. 7 de febrero de 2017;114(6):E980–9.

    Google Scholar 

  65. Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature febrero de. 2020;578(7796):600–4.

    Article  CAS  Google Scholar 

  66. Christophersen A, Ráki M, Bergseng E, Lundin KE, Jahnsen J, Sollid LM, et al. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United Eur Gastroenterol J agosto de. 2014;2(4):268–78.

    Article  Google Scholar 

  67. Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med marzo de. 2000;6(3):337–42.

    Article  CAS  Google Scholar 

  68. Ráki M, Dahal-Koirala S, Yu H, Korponay-Szabó IR, Gyimesi J, Castillejo G, et al. Similar responses of intestinal T cells from untreated children and adults with celiac disease to deamidated gluten epitopes. Gastroenterology septiembre de. 2017;153(3):787-798.e4.

    Article  Google Scholar 

  69. Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 1 de junio de 2018;128(6):2642–50.

    Google Scholar 

  70. Qiao S-W, Christophersen A, Lundin KEA, Sollid LM. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int Immunol enero de. 2014;26(1):13–9.

    Article  CAS  Google Scholar 

  71. Dahal-Koirala S, Ciacchi L, Petersen J, Risnes LF, Neumann RS, Christophersen A, et al. Discriminative T-cell receptor recognition of highly homologous HLA-DQ2-bound gluten epitopes. J Biol Chem. 18 de enero de 2019;294(3):941–52.

    Google Scholar 

  72. Christophersen A, Risnes LF, Dahal-Koirala S, Sollid LM. Therapeutic and diagnostic implications of T cell scarring in celiac disease and beyond. Trends in Molecular Medicine. 1 de octubre de 2019;25(10):836–52.

    Google Scholar 

  73. Di Niro R, Mesin L, Zheng N-Y, Stamnaes J, Morrissey M, Lee J-H, et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med. 26 de febrero de 2012;18(3):441–5.

    Google Scholar 

  74. Høydahl LS, Richter L, Frick R, Snir O, Gunnarsen KS, Landsverk OJB, et al. Plasma cells are the most abundant gluten peptide MHC-expressing cells in inflamed intestinal tissues from patients with celiac disease. Gastroenterology abril de. 2019;156(5):1428-1439.e10.

    Article  Google Scholar 

  75. Salmi TT, Collin P, Järvinen O, Haimila K, Partanen J, Laurila K, et al. Immunoglobulin A autoantibodies against transglutaminase 2 in the small intestinal mucosa predict forthcoming coeliac disease. Aliment Pharmacol Ther. 1 de agosto de 2006;24(3):541–52.

    Google Scholar 

  76. Mesin L, Sollid LM, Di Niro R. The intestinal B-cell response in celiac disease. Front Immunol. 2012;3:313.

    Article  PubMed  PubMed Central  Google Scholar 

  77. du Pré MF, Blazevski J, Dewan AE, Stamnaes J, Kanduri C, Sandve GK, et al. B cell tolerance and antibody production to the celiac disease autoantigen transglutaminase 2. J Exp Med. 3 de febrero de 2020;217(2).

    Google Scholar 

  78. Stamnaes J, Iversen R, du Pré MF, Chen X, Sollid LM. Enhanced B-Cell Receptor Recognition of the Autoantigen Transglutaminase 2 by Efficient Catalytic Self-Multimerization. PLoS One. 2015;10(8):e0134922.

    Google Scholar 

  79. Chirdo FG, Auricchio S, Troncone R, Barone MV. The gliadin p31–43 peptide: Inducer of multiple proinflammatory effects. Int Rev Cell Mol Biol. 2021;358:165–205.

    Article  PubMed  Google Scholar 

  80. Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity septiembre de. 2004;21(3):357–66.

    Article  CAS  Google Scholar 

  81. Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M, Bhagat G, et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J Exp Med. 15 de mayo de 2006;203(5):1343–55.

    Google Scholar 

  82. Hüe S, Mention J-J, Monteiro RC, Zhang S, Cellier C, Schmitz J, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity septiembre de. 2004;21(3):367–77.

    Article  Google Scholar 

  83. Anderson RP. Innate and adaptive immunity in celiac disease. Curr Opin Gastroenterol noviembre de. 2020;36(6):470–8.

    Article  CAS  Google Scholar 

  84. Villella VR, Venerando A, Cozza G, Esposito S, Ferrari E, Monzani R, et al. A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO J. 15 de enero de 2019;38(2).

    Google Scholar 

  85. Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci. 7 de noviembre de 2014;15(11):20518–37.

    Google Scholar 

  86. Nanayakkara M, Lania G, Maglio M, Auricchio R, De Musis C, Discepolo V, et al. P31–43, an undigested gliadin peptide, mimics and enhances the innate immune response to viruses and interferes with endocytic trafficking: a role in celiac disease. Sci Rep. 17 de julio de 2018;8(1):10821.

    Google Scholar 

  87. Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 5 de julio de 2003;362(9377):30–7.

    Google Scholar 

  88. Stepniak D, Koning F. Celiac disease–sandwiched between innate and adaptive immunity. Hum Immunol junio de. 2006;67(6):460–8.

    Article  CAS  Google Scholar 

  89. Jabri B, Kasarda DD, Green PHR. Innate and adaptive immunity: the yin and yang of celiac disease. Immunol Rev agosto de. 2005;206:219–31.

    Article  Google Scholar 

  90. Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol diciembre de. 2019;20(12):1574–83.

    Article  CAS  Google Scholar 

  91. Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. febrero de 2020;578(7796):600-4.

    Google Scholar 

  92. Bethune MT, Siegel M, Howles-Banerji S, Khosla C. Interferon-gamma released by gluten-stimulated celiac disease-specific intestinal T cells enhances the transepithelial flux of gluten peptides. J Pharmacol Exp Ther mayo de. 2009;329(2):657–68.

    Article  CAS  Google Scholar 

  93. Mazumdar K, Alvarez X, Borda JT, Dufour J, Martin E, Bethune MT, et al. Visualization of transepithelial passage of the immunogenic 33-residue peptide from alpha-2 gliadin in gluten-sensitive macaques. PLoS One. 19 de abril de 2010;5(4):e10228.

    Google Scholar 

  94. Bondar C, Araya RE, Guzman L, Rua EC, Chopita N, Chirdo FG. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One. 2014;9(2):e89068.

    Google Scholar 

  95. Fernández-Bañares F, Carrasco A, Martín A, Esteve M. Systematic review and meta-analysis: accuracy of both gamma delta+ intraepithelial lymphocytes and coeliac lymphogram evaluated by flow cytometry for coeliac disease diagnosis. Nutrients. 23 de agosto de 2019;11(9).

    Google Scholar 

  96. Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology septiembre de. 2015;149(3):681-691.e10.

    Article  CAS  Google Scholar 

  97. Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol diciembre de. 2009;9(12):858–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Arranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arranz, E., Garrote, J.A. (2022). Immunopathogenesis of Celiac Disease. In: Amil-Dias, J., Polanco, I. (eds) Advances in Celiac Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-82401-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82401-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82400-6

  • Online ISBN: 978-3-030-82401-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics