Skip to main content

Expansions on Quadrature Formulas and Numerical Solutions of Ordinary Differential Equations

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

  • 258 Accesses

Abstract

This paper is a continuation of the discussion on optimization of the quadrature formulas and their applications in paper [6]. Second-order numerical solutions of Volterra integral equations are constructed using the quadrature formulas obtained in [6]. The numerical results presented in the paper confirm the effectiveness of the methods for numerical solution of ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, M.D.: How to compute the series expansions of sec \(x\) and tan \(x\). Amer. Math. Monthly 93, 387–388 (1986). https://doi.org/10.2307/2323604

    Article  MathSciNet  MATH  Google Scholar 

  2. Brent, R.P., Harvey, D.: Fast computation of Bernoulli, tangent and secant numbers. In: Proceedings of a Workshop on Computational and Analytical Mathematics in honour of Jonathan Borwein’s 60th birthday, Springer Proceedings in Mathematics and Statistics, vol. 50, pp. 127–142 (2013)

    Google Scholar 

  3. Chen, M., Deng, W.: A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. arXiv:1610.02661 (2016)

  4. Davis, P.J., Rabinowitz, P.: Methods of numerical integration. 2nd edn. Academic (1984)

    Google Scholar 

  5. Dimitrov, Y.: Approximations for the Caputo derivative (I). J. Fract. Calc. Appl. 9(1), 35–63 (2018)

    MathSciNet  Google Scholar 

  6. Dimitrov, Y., Miryanov, R., Todorov, V.: Quadrature formulas and Taylor series of secant and tangent. Econ. Comput. Sci. 4, 23–40 (2017)

    Google Scholar 

  7. Dimitrov, Y., Miryanov, R., Todorov, V.: Asymptotic expansions and approximations of the Caputo derivative. Comput. Appl. Math. 37(4), 5476–5499 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dimitrov, Y.: Higher-order numerical solutions of the fractional relaxation-oscillation equation using fractional integration. arXiv:1603.08733 (2016)

  9. Dimov, I.: Monte Carlo Methods for Applied Scientists. World Scientific (2008)

    Google Scholar 

  10. Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71(3), 759–784 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. (2016)

    Google Scholar 

  12. Ding, H., Li, C.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19(1), 19–55 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  14. Georgiev, I. et al.: Comparison of heuristic algorithms for solving a specific model of transportation problem. In: AIP Conference Proceedings, vol. 2302. No. 1. AIP Publishing LLC (2020)

    Google Scholar 

  15. Georgieva, R.: Computational complexity of Monte Carlo algorithms for multidimensional integrals and integral equations. Ph.D. thesis, BAS (2009)

    Google Scholar 

  16. Gil, A., Segura, J., Temme, N.M.: Numerical methods for special functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2007)

    Google Scholar 

  17. Nyström, E.J.: Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben. Acta Math. 54(1), 185–204 (1930)

    Article  MathSciNet  Google Scholar 

  18. Todorov, V., Dimitrov, Y., Dimov, I.: Second order shifted approximations for the first derivative. In: Proceedings of International Conference HPC 2019 Studies in Computational Intelligence, Borovetz, Bulgaria (2019)

    Google Scholar 

  19. Farnoosh, R., Ebrahimi, M.: Monte Carlo method for solving Fredholm integral equations of the second kind. Appl. Math. Comput. 195, 309–315 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Kim, S.: Solving singular integral equations using Gaussian quadrature and overdetermined system. Comput. Math. Appl. 35(10), 63–71 (1998)

    Article  MathSciNet  Google Scholar 

  21. Knuth, D.E., Buckholtz, T.J.: Computation of tangent, Euler and Bernoulli numbers. Math. Comput. 21, 663–688 (1967)

    Article  MathSciNet  Google Scholar 

  22. Kouba, O.: Bernoulli polynomials and applications. Lecture Notes (2013)

    Google Scholar 

  23. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  24. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  25. Tuan, V.K., Gorenflo, R.: Extrapolation to the limit for numerical fractional differentiation Z. Agnew. Math. Mech. 75, 646–648 (1995). https://doi.org/10.1002/zamm.19950750826

    Article  MathSciNet  MATH  Google Scholar 

  26. Zaizai, Y., Zhimin, H.: Using the Monte Carlo method to solve integral equations using a modified control variate. Appl. Math. Comput. 242, 764–777 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Venelin Todorov is supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICT in SES)”, contract No DO1-205/23.11.2018, financed by the Ministry of Education and Science in Bulgaria and by the National Scientific Program for post doctoral and young scientists of Ministry of Education and Science 2020-2021. Yuri Dimitrov is supported by the Bulgarian National Science Fund under Young Scientists Project KP-06-M32/2 - 17.12.2019 “Advanced Stochastic and Deterministic Approaches for Large-Scale Problems of Computational Mathematics”. The work is also supported by the Bulgarian National Fund of Science under Project DN 12/5-2017 “Efficient Stochastic Methods and Algorithms for Large-Scale Computational Problems” and by Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications” funded by National Science Fund - Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todorov, V., Dimitrov, Y., Miryanov, R., Dimov, I., Poryazov, S. (2022). Expansions on Quadrature Formulas and Numerical Solutions of Ordinary Differential Equations. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_25

Download citation

Publish with us

Policies and ethics