Skip to main content

Acquired Pathology

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging
  • 1774 Accesses

Abstract

Temporal lobe epilepsy (TLE) is one of the most common forms of intractable epilepsy, with the frontal lobe the most common extratemporal site of seizure origin. Temporal lobe epilepsy can be further characterized as mesial temporal lobe epilepsy (mTLE) if there is an involvement of the amygdala, hippocampus, and/or entorhinal cortex. Of these, hippocampal or mesial temporal sclerosis (MTS) is one of the most common treatable causes of TLE. Sommer first characterized hippocampal sclerosis in 1880 [1], but the ability to diagnose this entity improved with noninvasive neuroimaging. This hardening or sclerosis of the hippocampus is the most commonly reported lesion in surgical and autopsy reports of temporal lobe epilepsy (TLE), occurring in up to 50% of cases of temporal lobe epilepsy. MTS is pathologically characterized by neuronal loss of pyramidal cells in the cornu ammonis, as well as dentate hilar neuronal loss. Patients may have a prior history of infection, trauma, or infantile febrile seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sommer W. Erkrankung des Ammonshornes als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr. 1880;361–375.

    Google Scholar 

  2. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):1315–29.

    Article  PubMed  Google Scholar 

  3. Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, Merschhemke M, Meencke HJ, Lehmann T, von Deimling A, Scheiwe C, Zentner J, Volk B, Romstöck J, Stefan H, Hildebrandt M. A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol. 2007;113(3):235–44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jaisani Z, Miletich RS, Ramanathan M, Weinstock AL. Clinical FDG-PET findings in patients with temporal lobe epilepsy: concordance with EEG and MRI. J Neuroimaging. 2020;30(1):119–25.

    Article  PubMed  Google Scholar 

  5. Chassoux F, Artiges E, Semah F, Laurent A, Landré E, Turak B, Gervais P, Helal BO, Devaux B. 18F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology. 2017;88(11):1045–53.

    Article  CAS  PubMed  Google Scholar 

  6. Choi JY, Kim SJ, Hong SB, Seo DW, Hong SC, Kim BT, Kim SE. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging. 2003;30:581–7.

    Article  PubMed  Google Scholar 

  7. Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, Somerville E, Mohamed A. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia. 2010;51:1365–73.

    Article  PubMed  Google Scholar 

  8. Alizada O, Akgun E, Akgun MY, Kemerdere R, Yeni SN, Tanriverdi T. What happens to temporal hypometabolism contralateral to side of surgery in patients with bilateral temporal hypometabolism? Clin Neurol Neurosurg. 2019;03(178):7–12.

    Article  Google Scholar 

  9. Blum DE, Ehsan T, Dungan D, Karis JP, Fisher RS. Bilateral temporal hypometabolism in epilepsy. Epilepsia. 2005;39(6):651–9.

    Article  Google Scholar 

  10. Koutroumanidis M, Hennessy MJ, Seed PT, Elwes RD, Jarosz J, Morris RG, Maisey MN, Binnie CD, Polkey CE. Significance of interictal bilateral temporal hypometabolism in temporal lobe epilepsy. Neurology. 2000;54(9):1811–21.

    Article  CAS  PubMed  Google Scholar 

  11. Colombo N, Tassi L, Deleo F, Citterio A, Bramerio M, Mai R, Sartori I, Cardinale F, Lo Russo G, Spreafico R. Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology. 2012;54(10):1065–77.

    Article  PubMed  Google Scholar 

  12. Knerlich-Lukoschus F, Connolly MB, Hendson G, Steinbok P, Dunham C. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia type II extratemporal epilepsies in children: analyses of an institutional case series. J Neurosurg Pediatr. 2017;19(2):182–95.

    Article  PubMed  Google Scholar 

  13. Kim SK, Na DG, Byun HS, Kim SE, Suh YL, Choi JY, Yoon HK, Han BK. Focal cortical dysplasia: comparison of MRI and FDG-PET. J Comput Assist Tomogr. 2000;24(2):296–302.

    Article  CAS  PubMed  Google Scholar 

  14. Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, Lerner JT, Sankar R, Shields WD, Engel J, Fried I, Miyata H, Yong WH, Vinters HV, Mathern GW. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagarde S, Boucekine M, McGonigal A, Carron R, Scavarda D, Trebuchon A, Milh M, Boyer L, Bartolomei F, Guedj E. Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging. 2020. https://doi-org.laneproxy.stanford.edu/10.1007/s00259-020-04791-1.

  16. Saavalainen T, Jutila L, Mervaala E, Kälviäinen R, Vanninen R, Immonen A. Temporal anteroinferior encephalocele: an underrecognized etiology of temporal lobe epilepsy? Neurology. 2015;85(17):1467–74.

    Article  PubMed  Google Scholar 

  17. Toledano R, Jiménez-Huete A, Campo P, Poch C, García-Morales I, Gómez Angulo JC, Coras R, Blümcke I, Álvarez-Linera J, Gil-Nagel A. Small temporal pole encephalocele: a hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia. 2016;57(5):841–51.

    Article  PubMed  Google Scholar 

  18. Campbell ZM, Hyer JM, Lauzon S, Bonilha L, Spampinato MV, Yazdani M. Detection and characteristics of temporal encephaloceles in patients with refractory epilepsy. AJNR Am J Neuroradiol. 2018;39(8):1468–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Morone PJ, Sweeney AD, Carlson ML, Neimat JS, Weaver KD, Abou-Khalil BW, Arain AM, Singh P, Wanna GB. Temporal lobe encephaloceles: a potentially curable cause of seizures. Otol Neurotol. 2015;36(8):1439–42.

    Article  PubMed  Google Scholar 

  20. Abou-Hamden A, Lau M, Fabinyi G, Berkovic SF, Jackson GD, Mitchell LA, Kalnins R, Fitt G, Archer JS. Small temporal pole encephaloceles: a treatable cause of “lesion negative” temporal lobe epilepsy. Epilepsia. 2010;51(10):2199–202.

    Article  PubMed  Google Scholar 

  21. Panov F, Li Y, Chang EF, Knowlton R, Cornes SB. Epilepsy with temporal encephalocele: characteristics of electrocorticography and surgical outcome. Epilepsia. 2016;57(2):e33–8.

    Article  CAS  PubMed  Google Scholar 

  22. Faulkner HJ, Sandeman DR, Love S, et al. Epilepsy surgery for refractory epilepsy due to encephalocele: a case report and review of the literature. Epileptic Disord. 2010;12(2):160–6.

    Article  PubMed  Google Scholar 

  23. Raabe A, Schmitz AK, Pernhorst K, Grote A, von der Brelie C, Urbach H, Friedman A, Becker AJ, Elger CE, Niehusmann P. Cliniconeuropathologic correlations show astroglial albumin storage as a common factor in epileptogenic vascular lesions. Epilepsia. 2012;53(3):539–48.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fierstra J, Conklin J, Krings T, Slessarev M, Han JS, Fisher JA, Terbrugge K, Wallace MC, Tymianski M, Mikulis DJ. Impaired peri-nidal cerebrovascular reserve in seizure patients with brain arteriovenous malformations. Brain. 2011;134(1):100–9.

    Article  PubMed  Google Scholar 

  25. Ding D, Starke RM, Quigg M, Yen CP, Przybylowski CJ, Dodson BK, Sheehan JP. Cerebral arteriovenous malformations and epilepsy, part 1: predictors of seizure presentation. World Neurosurg. 2015;84(3):645–52.

    Article  PubMed  Google Scholar 

  26. Turjman F, Massoud TF, Sayre JW, Viñuela F, Guglielmi G, Duckwiler G. Epilepsy associated with cerebral arteriovenous malformations: a multivariate analysis of angioarchitectural characteristics. AJNR Am J Neuroradiol. 1995;16(2):345–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ollivier I, Cebula H, Todeschi J, Santin MDN, Séverac F, Valenti-Hirsch MP, Hirsch E, Proust F. Predictive factors of epilepsy in arteriovenous malformation. Neurochirurgie. 2020;66(3):144–9.

    Article  CAS  PubMed  Google Scholar 

  28. Steiger HJ, Markwalder TM, Reulen HJ. Clinicopathological relations of cerebral cavernous angiomas: observations in eleven cases. Neurosurgery. 1987;21(6):879–84.

    Article  CAS  PubMed  Google Scholar 

  29. Ruan D, Yu XB, Shrestha S, Wang L, Chen G. The role of hemosiderin excision in seizure outcome in cerebral cavernous malformation surgery: a systematic review and meta-analysis. PLoS One. 2015;10(8):e0136619.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Awad I, Jabbour P. Cerebral cavernous malformations and epilepsy. Neurosurg Focus. 2006;21(1):e7.

    Article  PubMed  Google Scholar 

  31. Oyanguren B, Sánchez V, González FJ, de Felipe A, Esteban L, López-Sendón JL, Garcia-Barragán N, Martínez-San Millán J, Masjuán J, Corral I. Limbic encephalitis: a clinical-radiological comparison between herpetic and autoimmune etiologies. Eur J Neurol. 2013;20(12):1566–70.

    Article  CAS  PubMed  Google Scholar 

  32. Deuschl C, Rüber T, Ernst L, Fendler WP, Kirchner J, Mönninghoff C, Herrmann K, Quesada CM, Forsting M, Elger CE, Umutlu L. 18F-FDGPET/MRI in the diagnostic work-up of limbic encephalitis. PLoS One. 2020;15(1):e0227906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brenner T, Sills GJ, Hart Y, Howell S, Waters P, Brodie MJ, Vincent A, Lang B. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia. 2013;54(6):1028–35.

    Article  PubMed  Google Scholar 

  34. Dubey D, Alqallaf A, Hays R, Freeman M, Chen K, Ding K, Agostini M, Vernino S. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol. 2017;74(4):397–402.

    Article  PubMed  Google Scholar 

  35. Guerin J, Watson RE, Carr CM, Liebo GB, Kotsenas AL. Autoimmune epilepsy: findings on MRI and FDG-PET. Br J Radiol. 2019;92(1093):20170869.

    PubMed  Google Scholar 

  36. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dalmau J, Tüzün E, Wu HY, Masjuan J, Rossi JE, Voloschin A, Baehring JM, Shimazaki H, Koide R, King D, Mason W, Sansing LH, Dichter MA, Rosenfeld MR, Lynch DR. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, Dessain SK, Rosenfeld MR, Balice-Gordon R, Lynch DR. Anti-NMDA receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heine J, Prüss H, Bartsch T, Ploner CJ, Paul F, Finke C. Imaging of autoimmune encephalitis--relevance for clinical practice and hippocampal function. Neuroscience. 2015;309:68–83.

    Article  CAS  PubMed  Google Scholar 

  40. Leypoldt F, Buchert R, Kleiter I, Marienhagen J, Gelderblom M, Magnus T, Dalmau J, Gerloff C, Lewerenz J. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry. 2012;83:681–6.

    Article  PubMed  Google Scholar 

  41. Novy J, Allenbach G, Bien CG, Guedj E, Prior JO, Rossetti AO. FDG-PET hyperactivity pattern in anti-NMDAr encephalitis. J Neuroimmunol. 2016;297:156–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wegner F, Wilke F, Raab P, Tayeb SB, Boeck AL, Haense C, Trebst C, Voss E, Schrader C, Logemann F, Ahrens J, Leffler A, Rodriguez-Raecke R, Dengler R, Geworski L, Bengel FM, Berding G, Stangel M, Nabavi E. Anti-leucine rich glioma inactivated 1 protein and anti-Nmethyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-dglucose positron emission tomography. BMC Neurol. 2014;14:136.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yuan J, Guan H, Zhou X, Niu N, Li F, Cui L, Cui R. Changing brain metabolism patterns in patients with ANMDARE: serial 18F-FDG PET/CT findings. Clin Nucl Med. 2016;41:366–70.

    Article  PubMed  Google Scholar 

  44. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, Peles E, Buckley C, Lang B, Vincent A. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain. 2010;133(9):2734–48.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shin YW, Lee ST, Shin JW, Moon J, Lim JA, Byun JI, Kim TJ, Lee KJ, Kim YS, Park KI, Jung KH, Lee SK, Chu K. VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol. 2013;265:75–81.

    Article  CAS  PubMed  Google Scholar 

  46. Kotsenas AL, Watson RE, Pittock SJ, Britton JW, Hoye SL, Quek AM, Shin C, Klein CJ. MRI findings in autoimmune voltage-gated potassium channel complex encephalitis with seizures: one potential etiology for mesial temporal sclerosis. AJNR Am J Neuroradiol. 2014;35(1):84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zeineh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiu, A., Zeineh, M. (2022). Acquired Pathology . In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics