Skip to main content

Progressive Supranuclear Palsy

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging
  • 1800 Accesses

Abstract

The use of imaging biomarkers in progressive supranuclear palsy, a 4R tauopathy, has been evolving, with classic diagnostic workup including MR for structural imaging and 123I-Iodoflupane SPECT for dopamine transporter-specific imaging. 18F-FDG PET has been applied in PSP in the research setting; however, it shows limited diagnostic accuracy. More recently, tau-specific PET tracers have been developed which hold promise in improving diagnostic accuracy, especially early in the disease course. Differentiating PSP from other atypical parkinsonian syndrome phenotypes as well as from other neurodegenerative etiologies is important for prognostic and therapeutic purposes. Tau-targeted PET imaging may aid in further elucidation of the pathophysiology of PSP and its variants with the hope of developing disease-modifying therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HC:

Healthy Controls

PSP:

Progressive Supranuclear Palsy

PSP-P:

Progressive Supranuclear Palsy, Predominant Parkinsonism

IPD:

Idiopathic Parkinson Disease

MSA:

Multiple System Atrophy

CBD:

Corticobasal Degeneration

MAPT:

Microtubule-Associated Protein Tau

LRRK2:

Leucine-Rich Repeat Kinase 2

CTE:

Chronic Traumatic Encephalopathy

PSP-PGF:

Progressive Supranuclear Palsy, Predominant Progressive Gait Freezing

PSP-F:

Progressive Supranuclear Palsy, Predominant

DLB:

Dementia with Lewy Bodies

LBD:

Lewy Body Dementia

NFT’s:

Neurofibrillary Tangles

PPV:

Positive Predictive Value

PSP-RS:

Progressive Supranuclear Palsy-Richardson Syndrome

vPSP:

Variant Progressive Supranuclear Palsy

MRPI:

MR Parkinsonism Index

References

  1. Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol [Internet]. Arch Neurol. 1964 [cited 2020 Jul 17];10:333–59. Available from: https://pubmed.ncbi.nlm.nih.gov/14107684/.

  2. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–64.

    Article  Google Scholar 

  3. Weis S, Sonnberger M, Dunzinger A, Voglmayr E, Aichholzer M, Kleiser R, et al. Neurodegenerative Diseases: Progressive Supranuclear Palsy (PSP)–Cortico-Basal Degeneration (CBD). Imaging Brain Dis [Internet]. Springer Vienna; 2019 [cited 2020 Jul 31]. p. 973–85. Available from: https://link.springer.com/chapter/10.1007/978-3-7091-1544-2_35.

  4. Coyle-Gilchrist ITS, Dick KM, Patterson K, Rodríquez PV, Wehmann E, Wilcox A, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology [Internet]. Lippincott Williams and Wilkins. 2016 [cited 2020 Jul 17];86:1736–43. Available from: /pmc/articles/PMC4854589/?report=abstract.

    Google Scholar 

  5. Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary Parkinsonisms [Internet]. Mov Disord. 2011 [cited 2020 Jul 17]. p. 1083–95. Available from: https://pubmed.ncbi.nlm.nih.gov/21626553/.

  6. Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ, et al. The phenotypic spectrum of progressive supranuclear palsy: A retrospective multicenter study of 100 definite cases. Mov Disord [Internet]. John Wiley and Sons Inc.; 2014 [cited 2020 Jul 17];29:1758–66. Available from: https://pubmed.ncbi.nlm.nih.gov/25370486/.

  7. Baba Y, Putzke JD, Whaley NR, Wszolek ZK, Uitti RJ. Progressive supranuclear palsy: Phenotypic sex differences in a clinical cohort. Mov Disord [Internet]. Mov Disord. 2006 [cited 2020 Jul 17];21:689–92. Available from: https://pubmed.ncbi.nlm.nih.gov/16342256/.

  8. Dell’Aquila C, Zoccolella S, Cardinali V, De Mari M, Iliceto G, Tartaglione B, et al. Predictors of survival in a series of clinically diagnosed progressive supranuclear palsy patients. Park Relat Disord [Internet]. Parkinsonism Relat Disord. 2013 [cited 2020 Jul 20];19:980–5. Available from: https://pubmed.ncbi.nlm.nih.gov/23968651/.

  9. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov Disord [Internet]. John Wiley and Sons Inc. 2017 [cited 2020 Jul 17];32:853–64. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mds.26987.

  10. Borroni B, Agosti C, Magnani E, Di Luca M, Padovani A. Genetic Bases of Progressive Supranuclear Palsy: The MAPT Tau Disease. Curr Med Chem [Internet]. Bentham Science Publishers Ltd.; 2011 [cited 2020 Jul 27];18:2655–60. Available from: https://pubmed.ncbi.nlm.nih.gov/21568901/.

  11. Im SY, Kim YE, Kim YJ. Genetics of Progressive Supranuclear Palsy. J Mov Disord [Internet]. The Korean Movement Disorder Society. 2015 [cited 2020 Jul 27];8:122–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26413239/.

  12. Williams DR, Lees AJ. What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy-parkinsonism (PSP-P)? Mov Disord [Internet]. John Wiley & Sons, Ltd; 2010 [cited 2020 Aug 24];25:357–62. Available from: http://doi.wiley.com/10.1002/mds.22977.

  13. Litvan I, Hauw JJ, Bartko JJ, Lantos PL, Daniel SE, Horoupian DS, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol [Internet]. Lippincott Williams and Wilkins. 1996 [cited 2020 Jul 26];55:97–105. Available from: https://pubmed.ncbi.nlm.nih.gov/8558176/.

  14. 35.2.3 Neuroimaging Findings.

    Google Scholar 

  15. Yoshida K, Hata Y, Kinoshita K, Takashima S, Tanaka K, Nishida N. Incipient progressive supranuclear palsy is more common than expected and may comprise clinicopathological subtypes: a forensic autopsy series. Acta Neuropathol Springer Verlag. 2017;133:809–23.

    Article  Google Scholar 

  16. Kato N, Arai K, Hattori T. Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci [Internet]. Elsevier. 2003 [cited 2020 Jul 27];210:57–60. Available from: https://pubmed.ncbi.nlm.nih.gov/12736089/.

  17. Whitwell JL, Höglinger GU, Antonini A, Bordelon Y, Boxer AL, Colosimo C, et al. Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be? [Internet]. Mov. Disord. John Wiley and Sons Inc.; 2017 [cited 2020 Jul 27]. p. 955–71. Available from: https://movementdisorders.onlinelibrary.wiley.com/doi/full/10.1002/mds.27038.

  18. ADACHI M, KAWANAMI T, OHSHIMA H, SUGAI Y, HOSOYA T. Morning Glory Sign: A Particular MR Finding in Progressive Supranuclear Palsy. Magn Reson Med Sci [Internet]. Japanese Society for Magnetic Resonance in Medicine. 2004 [cited 2020 Jul 27];3:125–32. Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/mrms/3.125?from=CrossRef.

  19. Mueller C, Hussl A, Krismer F, Heim B, Mahlknecht P, Nocker M, et al. The diagnostic accuracy of the hummingbird and morning glory sign in patients with neurodegenerative parkinsonism. Park Relat Disord [Internet]. Elsevier Ltd. 2018 [cited 2020 Jul 27];54:90–4. Available from: https://doi.org/10.1016/j.parkreldis.2018.04.005.

  20. Cosottini M, Ceravolo R, Faggioni L, Lazzarotti G, Michelassi MC, Bonuccelli U, et al. Assessment of midbrain atrophy in patients with progressive supranuclear palsy with routine magnetic resonance imaging. Acta Neurol Scand [Internet]. Acta Neurol Scand. 2007 [cited 2020 Jul 27];116:37–42. Available from: https://pubmed.ncbi.nlm.nih.gov/17587253/.

  21. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology [Internet]. Radiological Society of North America. 2008 [cited 2020 Jul 27];246:214–21. Available from: www.rsna.org/rsnarights.

  22. Morelli M, Arabia G, Salsone M, Novellino F, Giofrè L, Paletta R, et al. Accuracy of magnetic resonance parkinsonism index for differentiation of progressive supranuclear palsy from probable or possible Parkinson disease. Mov Disord [Internet]. John Wiley & Sons, Ltd. 2011 [cited 2020 Jul 27];26:527–33. Available from: http://doi.wiley.com/10.1002/mds.23529.

  23. Longoni G, Agosta F, Kostić VS, Stojković T, Pagani E, Stošić-Opinćal T, et al. MRI measurements of brainstem structures in patients with Richardson’s syndrome, progressive supranuclear palsy-parkinsonism, and Parkinson’s disease. Mov Disord [Internet]. John Wiley & Sons, Ltd. 2011 [cited 2020 Jul 27];26:247–55. Available from: http://doi.wiley.com/10.1002/mds.23293.

  24. Hussl A, Mahlknecht P, Scherfler C, Esterhammer R, Schocke M, Poewe W, et al. Diagnostic accuracy of the magnetic resonance Parkinsonism index and the midbrain-to-pontine area ratio to differentiate progressive supranuclear palsy from Parkinson’s disease and the Parkinson variant of multiple system atrophy. Mov Disord [Internet]. Mov Disord. 2010 [cited 2020 Jul 27];25:2444–9. Available from: https://pubmed.ncbi.nlm.nih.gov/20878992/.

  25. Morelli M, Arabia G, Novellino F, Salsone M, Giofrè L, Condino F, et al. MRI measurements predict PSP in unclassifiable parkinsonisms: A cohort study. Neurology [Internet]. Lippincott Williams and Wilkins. 2011 [cited 2020 Jul 27];77:1042–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21832222/.

  26. Owens E, Krecke K, Ahlskog JE, Fealey R, Hassan A, Josephs KA, et al. Highly specific radiographic marker predates clinical diagnosis in progressive supranuclear palsy. Park Relat Disord [Internet]. Elsevier Ltd. 2016 [cited 2020 Jul 27];28:107–11. Available from: https://experts.umn.edu/en/publications/highly-specific-radiographic-marker-predates-clinical-diagnosis-i.

  27. Whitwell JL, Jack CR, Boeve BF, Parisi JE, Ahlskog JE, Drubach DA, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology [Internet]. American Academy of Neurology. 2010 [cited 2020 Jul 27];75:1879–87. Available from: /pmc/articles/PMC2995388/?report=abstract.

    Google Scholar 

  28. Quattrone A, Morelli M, Williams DR, Vescio B, Arabia G, Nigro S, et al. MR parkinsonism index predicts vertical supranuclear gaze palsy in patients with PSP-parkinsonism. Neurology [Internet]. Lippincott Williams and Wilkins. 2016 [cited 2020 Jul 27];87:1266–73. Available from: /pmc/articles/PMC5035983/?report=abstract.

    Google Scholar 

  29. Massey LA, Micallef C, Paviour DC, O’Sullivan SS, Ling H, Williams DR, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord [Internet]. 2012 [cited 2020 Jul 27];27:1754–62. Available from: http://doi.wiley.com/10.1002/mds.24968.

  30. Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology [Internet]. Lippincott Williams and Wilkins. 2000 [cited 2020 Jul 27];54:697–702. Available from: https://pubmed.ncbi.nlm.nih.gov/10680806/.

  31. Paviour D, Price SL, Jahanshahi M, Lees AJ, Fox NC. Regional brain volumes distinguish PSP, MSA-P, and PD: MRI-based clinico-radiological correlations. Mov Disord [Internet]. Mov Disord. 2006 [cited 2020 Jul 27];21:989–96. Available from: https://pubmed.ncbi.nlm.nih.gov/16602104/.

  32. Josephs KA, Whitwell JL, Dickson DW, Boeve BF, Knopman DS, Petersen RC, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging [Internet]. NIH Public Access; 2008 [cited 2020 Jul 27];29:280–9. Available from: /pmc/articles/PMC2702857/?report=abstract.

    Google Scholar 

  33. Seppi K, Schocke MFH, Esterhammer R, Kremser C, Brenneis C, Mueller J, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology [Internet]. Lippincott Williams and Wilkins; 2003 [cited 2020 Aug 24];60:922–7. Available from: https://n.neurology.org/content/60/6/922.

  34. Paviour DC, Thornton JS, Lees AJ, Jäger HR. Diffusion-weighted magnetic resonance imaging differentiates Parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Mov Disord [Internet]. John Wiley & Sons, Ltd. 2007 [cited 2020 Aug 24];22:68–74. Available from: http://doi.wiley.com/10.1002/mds.21204.

  35. Tsukamoto K, Matsusue E, Kanasaki Y, Kakite S, Fujii S, Kaminou T, et al. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson’s disease: Evaluation by 3.0-T MR imaging. Neuroradiology [Internet]. Springer. 2012 [cited 2020 Aug 24];54:947–55. Available from: https://link.springer.com/article/10.1007/s00234-012-1009-9.

  36. Kägi G, Bhatia KP, Tolosa E. The role of DAT-SPECT in movement disorders [Internet]. J. Neurol. Neurosurg. Psychiatry. BMJ Publishing Group Ltd; 2010 [cited 2020 Jul 31]. p. 5–12. Available from: https://jnnp.bmj.com/content/81/1/5.

  37. Takaya S, Sawamoto N, Okada T, Okubo G, Nishida S, Togashi K, et al. Differential diagnosis of parkinsonian syndromes using dopamine transporter and perfusion SPECT. Park Relat Disord [Internet]. Elsevier Ltd. 2018 [cited 2020 Jul 31];47:15–21. Available from: https://pubmed.ncbi.nlm.nih.gov/29157745/.

  38. Cummings JL, Henchcliffe C, Schaier S, Simuni T, Waxman A, Kemp P. The role of dopaminergic imaging in patients with symptoms of dopaminergic system neurodegeneration. A J Neurol [Internet]. [cited 2020 Jul 31]; Available from: https://academic.oup.com/brain/article-abstract/134/11/3146/309516.

  39. Arnold G, Tatsch K, Oertel WH, Vogl T, Schwarz J, Kraft E, et al. Clinical progressive supranuclear palsy: Differential diagnosis by IBZM- SPECT and MRI. J Neural Transm Suppl [Internet]. Springer-Verlag Wien; 1994 [cited 2020 Aug 17]. p. 111–8. Available from: https://link.springer.com/chapter/10.1007/978-3-7091-6641-3_9.

  40. Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology [Internet]. Lippincott Williams and Wilkins; 2012 [cited 2020 Aug 17];79:1314–22. Available from: https://n.neurology.org/content/79/13/1314.

  41. Effective and Efficient Diagnosis of Parkinsonism: The Role of Dopamine Transporter SPECT Imaging With DaTscan [Internet]. 2014. Available from: https://www.researchgate.net/publication/261635386.

  42. Badoud S, Van De Ville D, Nicastro N, Garibotto V, Burkhard PR, Haller S. Discriminating among degenerative parkinsonisms using advanced 123I-ioflupane SPECT analyses. NeuroImage Clin Elsevier Inc. 2016;12:234–40.

    Article  Google Scholar 

  43. Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from parkinson’s disease: Contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry [Internet]. 2002 [cited 2020 Aug 17];73:517–23. Available from: https://pubmed.ncbi.nlm.nih.gov/12397143/.

  44. Nakagawa M, Kuwabara Y, Taniwaki T, Sasaki M, Koga H, Kaneko K, et al. PET evaluation of the relationship between D2 receptor binding and glucose metabolism in patients with parkinsonism. Ann Nucl Med. 2005;19:267–75.

    Article  CAS  Google Scholar 

  45. Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain [Internet]. Oxford Academic; 1997 [cited 2020 Aug 17];120:2187–95. Available from: https://academic.oup.com/brain/article/120/12/2187/390968.

  46. Schreckenberger M, Hägele S, Siessmeier T, Buchholz HG, Armbrust-Henrich H, Rösch F, et al. The dopamine D2 receptor ligand 18F- desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging. 2004;31:1128–35.

    Article  CAS  Google Scholar 

  47. Okamura N, Harada R, Ishiki A, Kikuchi A, Nakamura T, Kudo Y. The development and validation of tau PET tracers: current status and future directions [Internet]. Clin. Transl. Imaging. Springer-Verlag Italia s.r.l.; 2018 [cited 2020 Jul 29]. p. 305–16. Available from: /pmc/articles/PMC6096533/?report=abstract.

    Google Scholar 

  48. Raffa S, Donegani MI, Borra A, Miceli A, Balma M, Bauckneht M, et al. Role of [18F]-FDG PET in patients with atypical parkinsonism associated with dementia [internet]. Clin. Transl. Imaging. Springer; 2020 [cited 2020 Jul 30]. p. 107–22. Available from: https://doi.org/10.1007/s40336-020-00360-6.

  49. Walker Z, Gandolfo F, Orini S, Garibotto V, Agosta F, Arbizu J, et al. Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia [Internet]. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg; 2018 [cited 2020 Jul 30]. p. 1534–45. Available from: https://doi.org/10.1007/s00259-018-4031-2.

  50. Akdemir ÜÖ, Tokçaer AB, Karakuş A, Kapucu LÖ. Brain 18F-FDG PET imaging in the differential diagnosis of parkinsonism. Clin Nucl Med [Internet]. Lippincott Williams and Wilkins; 2014 [cited 2020 Jul 27];39. Available from: https://pubmed.ncbi.nlm.nih.gov/24321825/.

  51. Brajkovic L, Kostic V, Sobic-Saranovic D, Stefanova E, Jecmenica-Lukic M, Jesic A, et al. The utility of FDG-PET in the differential diagnosis of Parkinsonism. Neurol Res [Internet]. Taylor and Francis Ltd.; 2017 [cited 2020 Jul 29];39:675–84. Available from: https://www.tandfonline.com/doi/full/10.1080/01616412.2017.1312211.

  52. Beyer L, Meyer-Wilmes J, Schönecker S, Schnabel J, Brendel E, Prix C, et al. Clinical Routine FDG-PET Imaging of Suspected Progressive Supranuclear Palsy and Corticobasal Degeneration: A Gatekeeper for Subsequent Tau-PET Imaging? Front Neurol [Internet]. Frontiers Media S.A.; 2018 [cited 2020 Jul 29];9:483. Available from: https://www.frontiersin.org/article/10.3389/fneur.2018.00483/full.

  53. Meyer PT, Frings L, Rücker G, Hellwig S. 18F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med. 2017;58:1888–98.

    Article  CAS  Google Scholar 

  54. Buchert R, Buhmann C, Apostolova I, Meyer PT, Gallinat J. übersichtsarbeit Nuklearmedizinische Diagnostik bei Parkinson-Syndromen [Internet]. Dtsch. Arztebl. Int. Deutscher Arzte-Verlag GmbH; 2019 [cited 2020 Jul 31]. p. 747–54. Available from: https://pubmed.ncbi.nlm.nih.gov/31774054/.

  55. Harada R, Okamura N, Furumoto S, Tago T, Yanai K, Arai H, et al. Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules [Internet]. MDPI AG; 2016 [cited 2020 Jul 29];6:7. Available from: http://www.mdpi.com/2218-273X/6/1/7.

  56. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-? proteinopathies in Alzheimer disease and other conditions [Internet]. Nat. Rev. Neurol. Nature Publishing Group; 2018 [cited 2020 Jul 29]. p. 225–36. Available from: https://pubmed.ncbi.nlm.nih.gov/29449700/.

  57. Smith R, Schöll M, Honer M, Christer NF, Englund E, et al. Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathol. 2017;133:149–51.

    Article  Google Scholar 

  58. Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol [Internet]. John Wiley and Sons Inc.; 2015 [cited 2020 Jul 29];78:787–800. Available from: https://pubmed.ncbi.nlm.nih.gov/26344059/.

  59. Samra A, Ramtahal J. Recurrent subacute visual loss presenting in a 52-year- ... Recurrent subacute visual loss presenting in a 52-year- ... Brain [Internet]. Oxford University Press. 2012 [cited 2020 Jul 11];139:16–7. Available from: https://academic.oup.com/brain/advance-article-abstract/doi/10.1093/brain/awy252/5140161.

  60. Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun [Internet]. BioMed Central Ltd.; 2016 [cited 2020 Jul 29];4. Available from: https://pubmed.ncbi.nlm.nih.gov/27296779/.

  61. Schonhaut DR, McMillan CT, Spina S, Dickerson BC, Siderowf A, Devous MD, et al. 18F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol [Internet]. John Wiley and Sons Inc.; 2017 [cited 2020 Jul 29];82:622–34. Available from: https://pubmed.ncbi.nlm.nih.gov/28980714/.

  62. Whitwell JL, Lowe VJ, Tosakulwong N, Weigand SD, Senjem ML, Schwarz CG, et al. [18F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord [Internet]. John Wiley and Sons Inc.; 2017 [cited 2020 Jul 31];32:124–33. Available from: /pmc/articles/PMC5552410/?report=abstract.

    Google Scholar 

  63. Perez-Soriano A, Arena JE, Dinelle K, Miao Q, McKenzie J, Neilson N, et al. PBB3 imaging in Parkinsonian disorders: Evidence for binding to tau and other proteins. Mov Disord [Internet]. John Wiley and Sons Inc.; 2017 [cited 2020 Jul 29];32:1016–24. Available from: https://mayoclinic.pure.elsevier.com/en/publications/pbb3-imaging-in-parkinsonian-disorders-evidence-for-binding-to-ta.

  64. Endo H, Shimada H, Sahara N, Ono M, Koga S, Kitamura S, et al. In vivo binding of a tau imaging probe, [ 11 C]PBB3, in patients with progressive supranuclear palsy. Mov Disord [Internet]. John Wiley and Sons Inc. 2019 [cited 2020 Jul 30];34:744–54. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.27643.

  65. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimer’s Res Ther [Internet]. BioMed Central Ltd. 2017 [cited 2020 Jul 29];9:25. Available from: http://alzres.biomedcentral.com/articles/10.1186/s13195-017-0253-y.

  66. Brendel M, Schönecker S, Höglinger G, Lindner S, Havla J, Blautzik J, et al. [18F]-THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy. Front Aging Neurosci [Internet]. Frontiers Media S.A.; 2018 [cited 2020 Jul 31];9:440. Available from: /pmc/articles/PMC5776329/?report=abstract.

    Google Scholar 

  67. Villemagne VL, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Hodges J, Harada R, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging [Internet]. Springer Verlag. 2014 [cited 2020 Jul 29];41:816–26. Available from: https://pubmed.ncbi.nlm.nih.gov/24514874/.

  68. Fodero-Tavoletti MT, Furumoto S, Taylor L, McLean CA, Mulligan RS, Birchall I, et al. Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimer’s Res Ther [Internet]. BioMed Central Ltd.; 2014 [cited 2020 Jul 29];6:11. Available from: /pmc/articles/PMC3979096/?report=abstract.

    Google Scholar 

  69. Smid LM, Vovko TD, Popovic M, Petrič A, Kepe V, Barrio JR, et al. The 2,6-Disubstituted Naphthalene Derivative FDDNP labeling reliably predicts congo red birefringence of protein deposits in brain sections of selected human neurodegenerative diseases. Brain Pathol [Internet]. 2006 [cited 2020 Jul 29];16:124–30. Available from: http://doi.wiley.com/10.1111/j.1750-3639.2006.00006.x.

  70. Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC, et al. PET imaging of neuropathology in tauopathies: Progressive supranuclear palsy. J Alzheimer’s Dis [Internet]. IOS Press. 2013 [cited 2020 Jul 29];36:145–53. Available from: /pmc/articles/PMC3674205/?report=abstract.

    Google Scholar 

  71. Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun [Internet]. NLM (Medline). 2019 [cited 2020 Jul 29];7:37. Available from: https://pubmed.ncbi.nlm.nih.gov/30857558/.

  72. Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [ 18 F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. [cited 2020 Jul 29]; Available from: https://doi.org/10.1007/s00259-019-04397-2.

  73. Brendel M, Barthel H, Van Eimeren T, Marek K, Beyer L, Song M, et al. Assessment of 18F-PI-2620 as a biomarker in progressive Supranuclear palsy. JAMA Neurol. 2020:1–12.

    Google Scholar 

  74. Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge [Internet]. Mol. Psychiatry. Nature Publishing Group. 2019 [cited 2020 Jul 15]. p. 1112–34. Available from: https://doi.org/10.1038/s41380-018-0342-8.

  75. Kompoliti K, Goetz CG, Litvan I, Jellinger K, Verny M. Pharmacological therapy in progressive supranuclear palsy. Arch Neurol [Internet]. 1998 [cited 2020 Jul 20];55:1099–102. Available from: https://pubmed.ncbi.nlm.nih.gov/9708960/.

  76. Lamb R, Rohrer JD, Lees AJ, Morris HR. Progressive Supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options [Internet]. Curr Treat Options Neurol. Current Science Inc. 2016 [cited 2020 Jul 20]. p. 42. Available from: https://link.springer.com/article/10.1007/s11940-016-0422-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Ivanidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitman, J., Ivanidze, J. (2022). Progressive Supranuclear Palsy. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics