Skip to main content

Attenuation Correction and Quantitative PET Analysis

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

The nature of PET is quantitative which allows it to measure precise physiology across various systems in the human body. In order to produce these quantitatively accurate PET images for in-depth analysis, several corrections are needed to get quantitatively accurate PET images including attenuation, scatter, random, dead time, decay, and crystal sensitivity corrections. While approaches to quantitatively correct stand-alone PET and PET/MR are mostly similar, attenuation correction is vastly different between these scanners. In this chapter, we first review various MR-based attenuation corrections for PET/MR and then discuss quantitative analysis techniques. These quantitative PET analysis techniques, from static to dynamic acquisition analysis, enable physicians and researchers to measure activity concentration in organs/tissues of a molecular process of a biochemical and functional system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dixon MRI is a method of obtaining great separation between fat and water due to the intrinsic chemical shift response between the two mediums. This chemical shift between fat and water allows the two molecules to process at different frequencies, thus creating two images wherein the fat and water signals are “in-phase” and “out-of-phase.” Dixon is usually considered to be a method for “fat suppression” as the “in-phase” and “out-of-phase images” can be used to create “water-only” and “fat-only” images.

  2. 2.

    Deep learning-based approaches can also be generalized and considered to be atlas-based approaches since they typically are trained on either a CT- or transmission-based atlas. Nevertheless, deep learning-based approaches omit the step of spatially registering the input image to the atlas.

References

  1. Lee TC, Alessio AM, Miyaoka RM, Kinahan PE. Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging. Q J Nucl Med Mol Imaging. 2016;60(1):25.

    PubMed  Google Scholar 

  2. Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography, vol. 2. Springer; 2005.

    Book  Google Scholar 

  3. Bushberg JTS, Anthony J, Leidholdt EM Jr, Boone JM. The essential physics of medical imaging, vol. 3. Baltimore: Williams & Wilkins; 2012.

    Google Scholar 

  4. Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. MAGMA. 2013;26(1):81–98.

    Article  Google Scholar 

  5. Chatziioannou A, Dahlbom M, Hoh C. Study on the use of transmission scans for whole body PET attenuation correction. IEEE Trans Nucl Sci. 1994;41(4):1545–50.

    Article  Google Scholar 

  6. Budinger TF, Gullberg GT, Huesman RH. Emission computed tomography. In: Image reconstruction from projections. Implementation and applications. Berlin: Springer; 1979.

    Google Scholar 

  7. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  Google Scholar 

  8. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Paper presented at: Seminars in nuclear medicine 2003.

    Google Scholar 

  9. Carney JP, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33(4):976–83.

    Article  Google Scholar 

  10. Abella M, Alessio AM, Mankoff DA, et al. Accuracy of CT-based attenuation correction in PET/CT bone imaging. Phys Med Biol. 2012;57(9):2477.

    Article  Google Scholar 

  11. Nakamoto Y, Osman M, Cohade C, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43(9):1137–43.

    PubMed  Google Scholar 

  12. Ma J, Vu AT, Son JB, Choi H, Hazle JD. Fat-suppressed three-dimensional dual echo Dixon technique for contrast agent enhanced MRI. J Magn Reson Imaging. 2006;23(1):36–41.

    Article  Google Scholar 

  13. Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53(5):796–804.

    Article  Google Scholar 

  14. Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, El Fakhri G. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci. 2013;60(5):3373–82.

    Article  Google Scholar 

  15. Ladefoged CN, Law I, Anazodo U, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. NeuroImage. 2017;147:346–59.

    Article  Google Scholar 

  16. Anazodo UC, Thiessen JD, Ssali T, et al. Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front Neurosci. 2015;8:434.

    Article  Google Scholar 

  17. Benoit D, Ladefoged CN, Rezaei A, et al. Optimized MLAA for quantitative non-TOF PET/MR of the brain. Phys Med Biol. 2016;61(24):8854.

    Article  CAS  Google Scholar 

  18. Catana C, van der Kouwe A, Benner T, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med. 2010;51(9):1431–8.

    Article  CAS  Google Scholar 

  19. Siriwanarangsun P, Statum S, Biswas R, Bae WC, Chung CB. Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant Imaging Med Surg. 2016;6(6):731.

    Article  Google Scholar 

  20. Weiger M, Pruessmann K. MRI with zero echo time. eMagRes. 2007.

    Google Scholar 

  21. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51(5):812–8.

    Article  Google Scholar 

  22. Poynton CB, Chen KT, Chonde DB, et al. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners. Am J Nucl Med Mol Imaging. 2014;4(2):160.

    PubMed  PubMed Central  Google Scholar 

  23. Juttukonda MR, Mersereau BG, Chen Y, et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. NeuroImage. 2015;112:160–8.

    Article  Google Scholar 

  24. Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med. 2015;56(3):423–9.

    Article  Google Scholar 

  25. Ladefoged C, Benoit D, Law I, et al. PET/MR attenuation correction in brain imaging using a continuous bone signal derived from UTE. Paper presented at: EJNMMI physics 2015.

    Google Scholar 

  26. Sekine T, Ter Voert EE, Warnock G, et al. Clinical evaluation of zero-echo-time attenuation correction for brain 18F-FDG PET/MRI: comparison with atlas attenuation correction. J Nucl Med. 2016;57(12):1927–32.

    Article  CAS  Google Scholar 

  27. Wiesinger F, Sacolick LI, Menini A, et al. Zero TE MR bone imaging in the head. Magn Reson Med. 2016;75(1):107–14.

    Article  Google Scholar 

  28. Huang C, Ouyang J, Reese T, Wu Y, El Fakhri G, Ackerman J. Continuous MR bone density measurement using water-and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR. Phys Med Biol. 2015;60(20):N369.

    Article  CAS  Google Scholar 

  29. Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys. 2010;37(5):2101–9.

    Article  Google Scholar 

  30. Burgos N, Cardoso MJ, Thielemans K, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33(12):2332–41.

    Article  Google Scholar 

  31. Izquierdo-Garcia D, Hansen AE, Förster S, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55(11):1825–30.

    Article  Google Scholar 

  32. Andreasen D, Van Leemput K, Hansen RH, Andersen JA, Edmund JM. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain. Med Phys. 2015;42(4):1596–605.

    Article  Google Scholar 

  33. Roy S, Wang W-T, Carass A, Prince JL, Butman JA, Pham DL. PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging. J Nucl Med. 2014;55(12):2071–7.

    Article  Google Scholar 

  34. Chen Y, Juttukonda M, Su Y, et al. Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction. Radiology. 2015;275(2):562–9.

    Article  Google Scholar 

  35. Mérida I, Costes N, Heckemann RA, Drzezga A, Förster S, Hammers A. Evaluation of several multi-atlas methods for PSEUDO-CT generation in brain MRI-PET attenuation correction. Paper presented at: 2015 IEEE 12th international symposium on biomedical imaging (ISBI) 2015.

    Google Scholar 

  36. Ladefoged CN, Benoit D, Law I, et al. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging. Phys Med Biol. 2015;60(20):8047.

    Article  CAS  Google Scholar 

  37. Wiesinger F, Bylund M, Yang J, et al. Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning. Magn Reson Med. 2018;80(4):1440–51.

    Article  Google Scholar 

  38. Spuhler KD, Ding J, Liu C, et al. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis. Magn Reson Med. 2019;82(2):786–95.

    Article  Google Scholar 

  39. Yu H, Chen S, Liu H, Cao T, Hu L, Shi H. A deep learning based technique for truncation completion in PET/MR. J Nucl Med. 2019;60(supplement 1):2028.

    Google Scholar 

  40. Vemuri P, Lowe VJ, Knopman DS, et al. Tau-PET uptake: regional variation in average SUVR and impact of amyloid deposition. Alzheimers Dement. 2017;6:21–30.

    Google Scholar 

  41. Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30(8):431–40.

    Article  CAS  Google Scholar 

  42. Motulsky HJ, Mahan L. The kinetics of competitive radioligand binding predicted by the law of mass action. Mol Pharmacol. 1984;25(1):1–9.

    CAS  PubMed  Google Scholar 

  43. Parsey RV, Slifstein M, Hwang D-R, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C] WAY-100635 in humans: comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab. 2000;20(7):1111–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serrano-Sosa, M., Franceschi, A.M., Huang, C. (2022). Attenuation Correction and Quantitative PET Analysis. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics