Skip to main content

Stratigraphic and Earth System Approaches to Defining the Anthropocene (2016)

  • Chapter
  • First Online:
Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History

Abstract

StratigraphyprovidesinsightsintotheevolutionanddynamicsoftheEarth Systemoveritslonghistory. WithrecentdevelopmentsinEarth Systemscience, changesinEarthSystemdynamicscannowbeobserveddirectlyand projected into the near future. An integration of the two approaches provides powerful insights into the nature and significance of contemporary changes to Earth. From both perspectives, the Earth has been pushed out of the Holocene Epoch by human activities, with the mid-20th century a strong candidate for the start date of the Anthropocene, the proposed new epoch in Earth history. Here we explore two contrasting scenarios for the future of the Anthropocene, recognizing that the Earth System has already undergone a substantial transition away from the Holocene state. A rapid shift of societies toward the UN Sustainable Development Goals could stabilise the Earth System in a state with more intense interglacial conditions than in the late Quaternary climate regime and with little further biospheric change. In contrast, a continuation of the present Anthropocene trajectory of growing human pressures will likely lead to biotic impoverishment and a much warmer climate with a significant loss of polar ice.

This text was first published as: Steffen, W.; Leinfelder, R.; Zalasiewicz, J.; Waters, C.N.; Williams, M.; Summerhayes, C.; Barnosky, A.D.; Cearreta, A.; Crutzen, P.; Edgeworth, M.; Ellis, E.C.; Fairchild, I.J.; Galuszka, A.; Grinevald, J.; Haywood, A.; do Sul, J.I.; Jeande, C.; McNeill, J.R.; Odada, E.; Oreskes, N.; Revkin, A.; de B. Richter, D.; Syvitski, J.; Vidas, D.; Wagreich, M.; Wing, S.L.; Wolfe, A.P.; Schellnhuber, H. J., 2016: “Stratigraphic and Earth System Approaches to Defining the Anthropocene”, in: Earth Future, 4: 324–345. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, E.A.; Long, S.P., 2005: “What have we learned from 15years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2”, in: New Phytol., 165, 2: 351–372; https://doi.org/10.1111/j.1469-8137.2004.01224.x.

  • Allwood, A.C.; Grotzinger, J.P.; Knoll, A.H.; Burch, I.W.; Anderson, M.S.; Coleman, M.L.; Kanik, I., 2009: “Controls on development and diversity of early Archean stromatolites”, in: Proc. Natl. Acad. Sci. USA, 106: 9548–9555; https://doi.org/10.1073/pnas.0903323106.

  • Alroy, J., 2010: “The shifting balance of diversity among major marine animal groups”, in: Science, 329: 1191–1194; https://doi.org/10.1126/science.1189910.

  • Anagnostou, E.; John, E.H.; Edgar, K.M.; Foster, G.L.; Ridgwell, A.; Inglis, G.N.; Pancost, R.D.; Lunt, D.J.; Pearson, P.N., 2016: “Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate”, in: Nature, 533: 380–384; https://doi.org/10.1038/nature17423.

  • Archer, D. et al., 2009: “Atmospheric lifetime of fossil fuel carbon dioxide”, in: Ann. Rev. EarthPlanet. Sci., 37: 117–134; https://doi.org/10.1146/annurev.earth.031208.100206.

  • Bai, X., et al., 2015: “Plausible and desirable futures in the Anthropocene: a new research agenda”, in: Global Environ. Change, 39: 351–362; https://doi.org/10.1016/j.gloenvcha.2015.09.017.

  • Bard, E., 2004: “Greenhouse effect and ice ages: historical perspective”, in: C. R. Geosci., 336; 603–638; https://doi.org/10.1016/j.crte.2004.02.005.

  • Barnosky, A. D., et al., 2011: “Has the Earth’s sixth mass extinction already arrived?”, in: Nature, 471: 51–57; https://doi.org/10.1038/nature09678.

  • Barnosky, A. D., et al., 2012: “Approaching a state-shift in the biosphere, in: Nature, 486: 52–56; https://doi.org/10.1038/nature11018.

  • Beerling, D.J.; Royer, D.L., 2011: “Convergent Cenozoic CO2 history, in: Nat. Geosci., 4: 418–420; https://doi.org/10.1038/ngeo1186.

  • Behrensmeyer, A.K.; Damuth, J.D.; DiMichele, W.A.; Potts, R.; Sues, H.-D.; Wing, S.L., 1992: Terrestrial Ecosystems through Time. Evolutionary Palaeocology of Terrestrial Plants and Animals (Chicago, Ill. – London, U.K.: Univ. of Chicago Press).

    Google Scholar 

  • Bell, E.A.; Boehnke, P.; Harrison, T.M.; Mao, W.L., 2015: “Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”, in: Proc. Natl. Acad. Sci. USA, 112, 47: 14518–14521; at: https://doi.org/10.1073/pnas.1517557112.

  • Berger, A.; Loutre, M.F., 2002: “An exceptionally long interglacial ahead?”, in: Science, 297: 1287–1288; https://doi.org/10.1126/science.1076120.

  • Berner, R.A., 1990: “Atmospheric carbon dioxide levels over Phanerozoic time”, in: Science, 249: 1382–1386; https://doi.org/10.1126/science.249.4975.1382.

  • Berner, R.A., 1999a: “A new look at the long-term carbon cycle”, in: GSA Today, 11, 9: 1–6.

    Google Scholar 

  • Berner, R.A., 1999b: “Atmospheric oxygen over Phanerozoic time”, in: Proc. Natl. Acad. Sci. USA, 96, 20: 10955–10957; https://doi.org/10.1073/pnas.96.20.10955.

  • Berner, R.A., 2003: “The long-term carbon cycle, fossil fuels and atmospheric composition”, in: Nature, 426: 323–326; https://doi.org/10.1038/nature02131.

  • Berner, R.A.; Lasaga, A.C.; Garrels, R.M., 1983: “The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years”, in: Am. J. Sci., 283: 641–683; https://doi.org/10.2475/ajs.283.7.641.

  • Bonneuil, C.; Fressoz, J.-B., 2016: The Shock of the Anthropocene: The Earth, History and Us (London, U.K., Verso).

    Google Scholar 

  • Bowen, G.J.; Maibauer, B.J.; Kraus, M.J.; Rohl, U.; Westerhold, T.; Steimke, A.; Gingerich, P.D.; Wing, S.L.; Clyde, W.C., 2015: “Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum”, in: Nat. Geosci., 8: 44–47; https://doi.org/10.1038/NGEO2316.

  • Boyd, P.W. et al., 2007: “Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions”, in: Science, 315: 612–617; https://doi.org/10.1126/science.1131669.

  • Bradley, R.S., 2015: Paleoclimatology: Reconstructing Climates of the Quaternary, 3rd ed., (Amsterdam: Elsevier).

    Google Scholar 

  • Braje, T.J., 2015: “Earth Systems, human agency, and the Anthropocene: Planet Earth in the human age”, in: J. Archaeol. Res., 23, 3: 369–396; https://doi.org/10.1007/s10814-015-9087-y.

  • Brook, B.W.; Barnosky, A.D., 2012: “Quaternary extinctions and their linkto climate change”, in: Hannah, L. 8ed.): Saving a Million Species: Extinction Risk from Climate Change (Washington, D.C.: Island Press): 179–198.

    Google Scholar 

  • Budyko, M.I., 1969: “The effect of solar radiation variations on the climate of the Earth”, in: Tellus, 21, 5: 611–619; https://doi.org/10.1111/j.2153-3490.1969.tb00466.x.

  • Budyko, M.I., 1986: “The Evolution of the Biosphere (Dordrecht: Reidel).

    Google Scholar 

  • Butterfield, N.J., 2011: “Animals and the invention of the Phanerozoic Earth System”, in: Trends Ecol. Evol., 26: 81–87; https://doi.org/10.1016/j.tree.2010.11.012.

  • Capinha, C.; Essl, F.; Seebens, H.; Moser, D.; Pereira, H.M., 2015: “The dispersal of alien species redefines biogeography in the Anthropocene, in: Science, 348, 6240: 1248–1251; https://doi.org/10.1126/science.aaa8913.

  • Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; Garcia, A.; Pringle, R.M.; Palmer, T.M., 2015: “Accelerated modern human-induced species losses: entering the sixth mass extinction”, in: Sci. Adv., 1, 5: e1400253; https://doi.org/10.1126/sciadv.1400253.

  • Chakrabarty, D., 2009: “The Climate of history: four theses”, in: Cri tInq, 35, 2: 197–222; https://doi.org/10.1086/596640.

  • Ciais, P. et al., 2013: “Carbon and other biogeochemical cycles”, in: Stocker, T.F. et al. (eds.), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge – New York: Cambridge Univ. Press): 465–570; https://doi.org/10.1017/CBO9781107415324.015.

  • Clark, W.C.; Munn, R.E. (eds.), 1986: Sustainable Development of the Biosphere (Laxenburg – Cambridge: IIASA – Cambridge Univ. Press).

    Google Scholar 

  • Clark, P.U. et al., 2016: “Consequences of twenty-first-century policy for multi-millennial climate and sea-level change”, in: Nat. Clim. Change, 6: 360–369; https://doi.org/10.1038/nclimate2923.

  • Claussen, M. et al., 2002: “Earth System models of intermediate complexity: closing the gap in the spectrum of climate system models”, in: Clim. Dynam., 18, 7: 579–586; https://doi.org/10.1007/s00382-001-0200-1.

  • Climate Interactive – MIT, 2015: “Climate Scoreboard”, at: https://www.climateinteractive.org/tools/scoreboard/.

  • Corlett, R.T., 2015: “The Anthropocene concept in ecology and conservation”, in: Trends Ecol. Evol., 30, 1: 36–41; https://doi.org/10.1016/j.tree.2014.10.007.

  • Crutzen, P.J., 2002: “Geology of mankind—the Anthropocene”, in: Nature, 415: 23; https://doi.org/10.1038/415023a.

  • Crutzen, P.J.; Stoermer, E.F., 2000: “The Anthropocene”, in: Global Change Newslett., 41: 17–18.

    Google Scholar 

  • Cui, Y.; Kump, L.R.; Ridgwell, A.J.; Charles, A.J.; Junium, C.K.; Diefendorf, A.F.; Freeman, K.H.; Urban, N.M.; Harding, I.C., 2011: “Slow release of fossil carbon during the Palaeocene-Eocene thermal maximum”, in: Nat. Geosci., 4: 481–485; https://doi.org/10.0138/ngeo1179.

  • DePaolo, D.J.; Cerling, T.E.; Hemming, S.R.; Knoll, A.H.; Richter, F.M.; Royden, L.H.; Rudnick, R.L.; Stixrude, L.; Trefil, J.S., 2008: Origin and Evolution of Earth: Research Questions for a Changing Planet (Washington, D.C.: The National Academies Press).

    Google Scholar 

  • Dickens, G.R., 2011: “Methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events: setting appropriate parameters for discussion”, in: Clim. Past Discuss., 7, 2: 1139–1174; https://doi.org/10.5194/cpd-7-1139-2011.

  • Dickens, G.R.; O’Neil, J.R.; Rea, D.K.; Owen, R.M., 1995: “Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene”, in: Paleoceanography, 10, 6: 965–971; https://doi.org/10.1029/95PA02087.

  • Diffenbaugh, N.S.; Field, C.B., 2013: “Changes in ecologically critical terrestrial climate conditions”, in: Science, 341: 486–492; https://doi.org/10.1126/science.1237123.

  • DiMichele, W.A.; Hook, R.W.; Beerbower, R.; Boy, J.A.; Gastaldo, R.A.; Hotton III, N.; Phillips, T.L.; Scheckler, S.E.; Shear, W.A.; Sues, H.-D.; Behrensmeyer, A.K.; Damuth, J.D.; DiMichele, W.A.; Potts, R.; Sues, H.-D.; Wing, S.L. (eds.), 1992: “Paleozoic terrestrial ecosystems”, in: Terrestrial Ecosystems through Time (Chicago, Ill.: Univ. Chicago Press): 205–325.

    Google Scholar 

  • Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Foley, K.M.; Johnson, A.L.A.; Williams, M.; Riesselman, C.R., 2013: “The PRISM (Pliocene palaeoclimate) reconstruction: time for a paradigm shift”, in: Phil. Trans. Roy Soc. Lond. A, 371: 20120524; https://doi.org/10.1098/rsta.2012.0524.

  • Dutton, A.; Carlson, A.E.; Long, A.J.; Milne, G.A.; Clark, P.U.; DeConto, R.; Horton, B.P.; Rahmstorf, S.; Raymo, M.E., 2015: “Sea-level rise due to polar ice-sheet mass loss during past warm periods”, in: Science, 349, 6244: 153; https://doi.org/10.1126/science.aaa4019.

  • Edgeworth, M.; deB Richter, D.; Waters, C.N.; Haff, P.; Neal, C.; Price, S.J., 2015: “Diachronous beginnings of the Anthropocene: the lower bounding surface of anthropogenic deposits”, in: Anthropocene Rev., 2, 1: 1–26; https://doi.org/10.1177/2053019614565394.

  • Edwards, D.; Davies, K.L.; Axe, L., 1992: “A vascular conducting strand in the early land plant Cooksonia, in: Nature, 357: 683–685; https://doi.org/10.1038/357683a0.

  • Ellis, E.C.; Antill, E.C.; Kreft, H., 2012: “All is not loss: plant biodiversity in the Anthropocene, in: PLoSOne, 7, 1: e30535, https://doi.org/10.1371/journal.pone.0030535.

  • EPICA (European Project for Ice Coring in Antarctica) Community Members, 2004: “Eight glacial cycles from an Antarctic ice core”, in: Nature, 429: 623–628; https://doi.org/10.1038/nature02599.

  • Erwin, D.H.; Laflamme, M.; Tweedt, S.M.; Sperling, E.A.; Pisani, D.; Peterson, K.J., 2011: “The Cambrian conundrum: early divergence and later ecological success in the early history of animals”, in: Science, 334: 1091–1097; https://doi.org/10.1126/science.1206375.

  • Fairchild, I.J.; Kennedy, M.J., 2007: “Neoproterozoic glaciation in the Earth System”, in: J. Geol. Soc. Lond., 164: 895–921; https://doi.org/10.1144/0016-76492006-191.

  • Feulner, G., 2012: “The faint young sun problem”, in: Rev. Geophys., 50: RG2006; https://doi.org/10.1029/2011RG000375.

  • Fischer-Kowalski, M.; Krausmann, F.; Pallua, I., 2014: “A sociometabolic reading of the Anthropocene: modes of subsistence, population size and human impact on Earth”, in: Anthropocene Rev., 7, 1: 8–33; https://doi.org/10.1177/2053019613518033.

  • Flato, G. et al., 2013: “Evaluation of Climate Models”, in: Stocker, T.F. et al. (eds.): Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge – New York: Cambridge Univ. Press).

    Google Scholar 

  • Franks, P.J.; Royer, D.L.; Beerling, D.J.; Van deWater, P.K.; Cantrill, D.J.; Barbour, M.M.; Berry, J.A., 2014: “New constraints on atmospheric CO2 concentration for the Phanerozoic, in: Geophys. Res. Lett., 47: 4685–4694; https://doi.org/10.1002/2014GL060457.

  • Gale, A.S.; Young, J.R.; Shackleton, N.J.; Crowhurst, S.J.; Wray, D.S., 1999: “Orbital tuning of the Cenomanian marly chalk successions: towards a Milankovitch time-scale for the late Cretaceous”, in: Phil. Trans. Roy. Soc. Lond. A, 357:1815–1829; https://doi.org/10.1098/rsta.1999.0402.

  • Galvez, M.E.; Gaillardet, J., 2012: “ Historical constraints on the origin of the carbon cycle concept”, in: C. R. Geosci., 344, 11–12: 549–567; https://doi.org/10.1016/j.crte.2012.10.006.

  • Ganopolski, A.; Winkelmann, R.; Schellnhuber, H.J., 2016: “Critical insolation-CO2 relation for diagnosing past and future glacial inception, in: Nature, 529: 200–203; https://doi.org/10.1038/nature16494.

  • Gibbard, P.L. et al., 2005: “What status for the Quaternary?”, in: Boreas, 34, 1–6; https://doi.org/10.1080/03009480510012854.

  • Gillings, M. R.; Paulsen, I.T., 2014: “Microbiology of the Anthropocene”, in: Anthropocene, 5: 1–8; https://doi.org/10.1016/j.ancene.2014.06.004.

  • Gradstein, F.; Ogg, G.; Schmitz, M. (eds.), 2012: The Geological Time Scale 2072, vol. 7 (Amsterdam: Elsevier): 77.

    Google Scholar 

  • Grassineau, N.V.; Nisbet, E.G.; Fowler, C.M.R.; Bickle, M.J.; Lowry, D.; Chapman, H.J.; Mattey, D.P.; Abell, P.; Yong, J.; Martin, A., 2002: “Stable isotopes in the Archaean Belingwe belt, Zimbabwe: evidence for a diverse microbial mat ecology”, in: Spec Publ Geol Soc, Lond, 79: 309–328; https://doi.org/10.1144/GSL.SP.2002.199.01.15.

  • Grassineau, N.; Abell, P.; Appel, P.W.U.; Lowry, D.; Nisbet, E., 2006: “Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga)”, in: Kesler, S E.; Ohmoto, H. (eds.): Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere—Constraints from Ore Deposits, vol. 798 (Boulder, Colo.: Geological Society of America): 33–52.

    Google Scholar 

  • Greb, S.F.; DiMichele, W.A.; Gastaldo, R.A., 2006: “Evolution and importance of wetlands in earth history”, in: Geol. Soc. Am. Special Papers, 399: 1–40.

    Google Scholar 

  • Griggs, D.; Stafford Smith, M.; Gaffney, O.; Rockström, J.; Ohman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I., 2013: “Sustainable development goals for people and planet”, in: Nature, 495: 305–307; https://doi.org/10.1038/495305a.

  • Grinevald, J., 1987: “On a holistic concept for deep and global ecology: the biosphere”, in: Fundamenta Scientiae, 8,2: 197–226.

    Google Scholar 

  • Haff, P.K., 2014: “Humans and technology in the Anthropocene. Six rules”, in: Anthropocene Rev., 7:, 126–136; https://doi.org/10.1177/2053019614530575.

  • Hamilton, C.; Grinevald, J., 2015: “Was the Anthropocene anticipated?”, in: Anthropocene Rev., 2:59–72; https://doi.org/10.1177/2053019614567155.

  • Hammarlund, E.U.; Dahl, T.W.; Harper, D.A.T.; Bond, D.P.G.; Nielsen, A.T.; Bjerrum, C.J.; Schovsbo, N.H.; Schönlaub, H.P.; Zalasiewicz, J.A.; Canfield, D.E., 2012: “A sulfidic driver for the end-Ordovician mass extinction”, in: Earth Planet. Sci. Lett, 331–332: 128–139; https://doi.org/10.1016/j.epsl.2012.02.024.

  • Haywood, A. M.; Dowsett, H.J.; Valdes, P.J., 2009: “The Pliocene. A vision of Earth in the late twenty-first century?”, in: Phil..Trans. Roy. Soc. Lond. A: 367: 3–204, edited thematic set.

    Google Scholar 

  • Haywood, A.M.; Ridgwell, A.; Lunt, D.L.; Hill, D.J.; Pound, M.J.; Dowsett, H.J.; Dolan, A.M.; Francis, J.E.; Williams, M., 2011: “Are there pre-Quaternary geological analogues for a future greenhouse gas-induced global warming?”, in: Phil. Trans. Roy. Soc. Lond. A, 369: 933–956; https://doi.org/10.1098/rsta.2010.0317.

  • Hibbard, K.A.; Crutzen, P.J.; Lambin, E.F.; Liverman, D.M.; Mantua, N.J.; McNeill, J.R.; Messerli, B.; Steffen, W., 2006: “Decadal interactions of humans and the environment”, in: Costanza, R.; Graumlich, L.; Steffen, W. (eds.): Integrated History and Future of People on Earth, Dahlem Workshop Report 96 (Cambridge, Mass.: The MIT Press): 341–375.

    Google Scholar 

  • Hirota, M.; Holmgren, N.M.; Van Nes, E.H.; Scheffer, M., 2011: “Global resilience of tropical forest and savanna to critical transitions”, in: Science, 334: 232–235; https://doi.org/10.1126/science.1210657.

  • Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P., 1998: “A neoproterozoic snowball earth”, in: Science, 287: 1342–1346; https://doi.org/10.1126/science.281.5381.1342.

  • Hotton, C.L.; Hueber, F.M.; Griffing, D.H.; Bridge, J.S., 2001: “Early terrestrial plant environments: an example from the Emsian of Gaspe, Canada”, in: Gensel, P.G.; Edwards, D. (eds.): Plants Invade the Land: Evolutionary and Environmental Perspectives (New York: Columbia Univ. Press): 179–212.

    Google Scholar 

  • Hou, X.-G.; Aldridge, R.; Bergstrom, J.; David, J.S.; Siveter, D.J.; Feng, X.-H., 2004: “The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life (Oxford: Wiley Blackwell).

    Google Scholar 

  • Hughes, T.P.; Carpenter, S.; Rockström, J.; Scheffer, M.; Walker, B., 2013: “Multiscale regime shifts and planetary boundaries”, in: Trends Ecol. Evol., 28: 389–395; https://doi.org/10.1016/j.tree.2013.05.019.

  • Hutton, J., 1795: Theory of the Earth with Proofs and Illustrations (In four parts): vol. I, 620 pp., vol. II, 567 pp., vol. III (Edinburgh: Geological Society); vol. 7899 (London: Geological Society).

    Google Scholar 

  • ICOLD (International Commission of Large Dams Registry), 2016: at: http://www.icold-cigb.org/GB/World_register/general_synthesis.asp..

  • ICSU, 1986: “The International Geosphere Biosphere Programme: A Study of Global Change, Final report of the Ad Hoc Planning Group, Prepared for the 21st General Assembly, Berne, 14–19 September 1986 (Paris: International Council of Scientific Unions).

    Google Scholar 

  • IPCC, 2013: “Summary for Policymakers”, in: Stocker et al., T.F. (eds.): Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge – New York: Cambridge Univ. Press).

    Google Scholar 

  • Jensen, S., 2003: “The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives”, in: Integr. Comp. Biol., 43: 219–228; https://doi.org/10.1093/icb/43.1.219.

  • Jørgensen, S.E., (ed.), 2010: “Global Ecology: A Derivative of Encyclopedia of Ecology, (Amsterdam – Boston, Mass: Elsevier and Academic Press).

    Google Scholar 

  • Kent, D.V.; Muttoni, G., 2008: “Equatorial convergence of India and early Cenozoic climate trends”, in: Proc. Natl. Acad. Sci. USA, 705, 42: 16065–16070; https://doi.org/10.1073/pnas.0805382105.

  • Kirtman B., et al., 2013: “Near-term climate change: projections and predictability, in: Stocker, T.F. et al. (eds.): Climate Change 2073: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge – New York: Cambridge Univ. Press): 465–570; https://doi.org/10.1017/CBO9781107415324.015.

  • Knorr, W.; Prentice, I.C.; House, J.I.; Holland, E.A., 2005: “Long-term sensitivity of soil carbon turnover to warming”, in: Nature, 433: 7023: 298–301; https://doi.org/10.1038/nature03226.

  • Koch, P.L.; Barnosky, A.D., 2006: “Late quaternary extinctions: state of the debate, in: Ann. Rev. Ecol. Evol. System., 37: 215–250; https://doi.org/10.1146/annurev.ecolsys.34.011802.132415.

  • Laskar, J.; Fienga, A.; Gastineau, M.; Manche; H., 2010: “A new orbital solution for the long-term motion of the Earth”, in: Astron. Astrophys., 532: A89; https://doi.org/10.1051/0004-6361/201116836.

  • Latour, B., 2015: Face à Gaïa: Huit Conférences sur le Nouveau Régime Climatique (Paris: La Découverte).

    Google Scholar 

  • Lenton, T.M., 2011: “Tipping elements: jokers in the pack”, in: Richardson, K.; Steffen, W.; Liverman, D. (eds): Climate Change: Global Risks, Challenges and Decisions (Cambridge: Cambridge Univ. Press): 163–201.

    Google Scholar 

  • Lenton, T.M., 2015: Earth System Science. A Very Short Introduction (Oxford: Oxford Univ. Press).

    Google Scholar 

  • Lenton, T M.; Watson, A.J., 2011: Revolutions That Made the Earth (Oxford: Oxford Univ. Press).

    Google Scholar 

  • Lenton, T.M.; Williams, H.T.P., 2013: “On the origin of planetary-scale tipping points”, in: Trends Ecol. Evol., 28: 380–382; https://doi.org/10.1016/j.tree.2013.06.001.

  • Lenton, T.M. et al., 2004: “Long-term geosphere-biosphere coevolution and astrobiology”, in: Schellnhuber, H.J.; Crutzen, P.J.; Clark, W.C.; Claussen, M.; Held, H. (eds.): Earth System Analysis for Sustainability (Cambridge, Mass.: The MIT Press): 110–139.

    Google Scholar 

  • Lenton, T.M.; Held, H.; Kiegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J., 2008: “Tipping elements in the Earth’s climate system”, in: Proc. Natl. Acad. Sci. USA, 705: 1786–1793; https://doi.org/10.1073/pnas.0705414105.

  • Lewis, S.L.; Maslin, M.A., 2015: “Defining the Anthropocene”, in: Nature, 579: 171–180; https://doi.org/10.1038/nature14258; pmid: 25762280.

  • Lovelock, J.E., 1979: GAIA: A New Look at Life on Earth (Oxford: Oxford Univ. Press; new edition, 1995).

    Google Scholar 

  • Lovelock, J. E., 1988: The Ages of Gaia: A Biography of Our Living Earth (New York: W.W. Norton & Co; new edition, 1995).

    Google Scholar 

  • Lovelock, J.; Margulis, L., 1974: “Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis”, in: Tellus, 26, 1–2: 2–10; https://doi.org/10.1111/j.2153-3490.1974.tb01946.x.

  • Lunt, D. J. et al., 2012: “A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations: EoMIP”, in: Clim. Past, 8: 1717–1736; https://doi.org/10.5194/cp-8-1717-2012.

  • Malm, A.; Hornborg, A., 2014: “The geology of mankind? A Critique of the Anthropocene narrative”, in: Anthropocene Rev., 7, 1: 62–69; https://doi.org/10.1177/2053019613516291.

  • Malone, T.F.; Roederer, J.G. (eds.), 1985: Global Change. The Proceedings of a Symposium sponsored by the International Council of Scientific Unions (ICSU) during its 20th General Assembly in Ottawa, Canada on September 25, 1984 (Cambridge: ICSU Press – Cambridge Univ. Press).

    Google Scholar 

  • Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A., 2013: “A reconstruction of regional and global temperature for the past 11,300 years”, in: Science, 339, 6124: 1198–1201; https://doi.org/10.1126/science.1228026.

  • Maslin, M.A.; Lewis, S.L., 2015: “Anthropocene: Earth System, geological, philosophical and political paradigm shifts”, in: Anthropocene Rev., 2, 2: 108–116; https://doi.org/10.1177/2053019615588791.

  • Masson-Delmotte, V. et al., 2013: “Information from paleoclimate archives”, in: Stocker, T.F. et al. (eds.): Climate Change 2073: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge – New York: Cambridge Univ. Press): 383–464.

    Google Scholar 

  • Mathesius, S.; Hofmann, M.; Caldeira, K.; Schellnhuber, H.J., 2015: “Long-term response of oceans to CO2 removal from the atmosphere”, in: Nat. Clim. Change, 5, 12: 1107–1113; https://doi.org/10.1038/nclimate2729.

  • McInerney, F.A.; Wing, S.L., 2011: “The Paleocene-Eocene thermal maximum—a perturbation of carbon cycle, climate, and biosphere with implications for the future”, in: Ann. Rev. Earth Planet. Sci., 39: 489–516; https://doi.org/10.1146/annurev-earth-040610-133431.

  • McNeill, J.R.; Engelke, P., 2016: The Great Acceleration (Cambridge Mass.: Harvard Univ. Press).

    Google Scholar 

  • Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R., 2009: “Greenhouse gas emission targets for limiting global warming to 2°C”, in: Nature, 458: 1158–1162; https://doi.org/10.1038/nature08017.

  • Melchin, M.J.; Sadler, P.M.; Cramer, B.D., 2012: “The Silurian period”, in: Gradstein, F.; Ogg, G.; Schmitz, M. (eds.): The Geological Time Scale 2072 (Amsterdam: Elsevier): 526–558.

    Google Scholar 

  • Miller, G. H.; Magee, J.W.; Johnson, B.J.; Fogel, M.L.; Spooner, N.A.; McCulloch, M.T.; Ayliffe, L.K., 1999: “Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna”, in: Science, 283: 205–208; https://doi.org/10.1126/science.283.5399.205.

  • Miller, K.G.; Wright, J.D.; Browning, J.V.; Kulpecz, A.; Kominz, M.; Naish, T.R.; Cramer, B.S.; Rosenthal, Y.; Peltier, W.R.; Sosdian, S., 2012: “High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation”, in: Geology, 40: 407–410; https://doi.org/10.1130/G32869.1.

  • Molina, E.; Alegret, L.; Arenillas, I.; Arz, J.A.; Gallala, N.; Hardenbol, J.; von Salis, K.; Steurbaut, E.; Vandenberghe, N.; Zaghbib-Turki, D., 2006: “The Global Boundary Stratotype Section for the base of the Danian Stage (Paleocene, Paleogene, ‘Tertiary’, Cenozoic) at El Kef, Tunisia — original definition and revision”, in: Episodes, 29,4: 263–273.

    Google Scholar 

  • Naish, T.; Zwartz, D., 2012: “Palaeoclimate: looking back to the future”, in: Nat. Clim. Change, 2: 317–318; https://doi.org/10.1038/nclimate1504.

  • Naish, T.R. et al., 2001: “Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary”, in: Nature, 473: 719–723; https://doi.org/10.1038/35099534.

  • Naish, T.R., et al., 2009: “Oliquity-paced Pliocene West Antarctic Ice Sheet oscillations”, Nature, 458: 322–329; https://doi.org/10.1038/nature07867.

  • NASA Earth System Sciences Committee, 1988: “Earth System Science: A Closer View (Washington, D. C.: NASA Advisory Council).

    Google Scholar 

  • Nisbet, E.G.; Fowler, C.M.R., 2014: “The early history of life”, in: Holland, D.; Turekian, K.K. (eds.): Treatise on Geochemistry vol. 70, 2nd ed. (Oxford: Elsevier): 1–42.

    Google Scholar 

  • NOAA, 2016: “State of the Climate: Global Analysis for Annual 2015, National Centers for Environmental Information”; at. http://www.ncdc.noaa.gov/sotc/global/201513.

  • Oldroyd, D., 1996: Thinking about the Earth: A History of Ideas in Geology (London, U.K.: Athlone).

    Google Scholar 

  • Pagani, M.; Zachos, J.C.; Freeman, K.H.; Tipple, B.; Bohaty, S., 2005: “Marked decline in atmospheric carbon dioxide concentrations during the Paleogene”, in: Science, 309: 600–603; https://doi.org/10.1126/science.1110063.

  • Page, A.; Zalasiewicz, J.A.; Williams, M.; Popov, L.E., 2007: “Were transgressive black shales a negative feedback modulating glacioeustasy in the Early Palaeozoic Icehouse?” in: Williams, M.; Haywood, A.M.; Gregory, F.J.; Schmidt, D.N. (eds.): Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, Special Publications (London, U.K.: The Geological Society – The Micropalaeontological Society): 123–156.

    Google Scholar 

  • PAGES (Past Interglacials Working Group of PAGES), 2016: “Interglacials of the last 800,000 years”, in: Rev. Geophys., 54: 162–219; https://doi.org/10.1002/2015RG000482.

  • PAGES 2 K Consortium, 2013: “Continental-scale temperature variability during the past two millennia”, in: Nat. Geosci., 6: 339–346; <https://doi.org/10.1038/ngeo1797<.

  • Parrenin, F.; Masson-Delmotte, V.; Kohler, P.; Raynaud, D.; Paillard, D.; Schwander, J.; Barbante, C.; Landais, A.; Wegner, A.; Jouzel, J., 2013: “Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming”, in: Science, 339, 6123: 1060–1063; https://doi.org/10.1126/science.1226368.

  • Payne, J.L. et al., 2008: “Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity”, in: Proc. Natl. Acad. Sci. USA, 106: 24–27; https://doi.org/10.1073/pnas.0806314106.

  • Petit, J.R. et al., 1999: “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica”, in: Nature, 399: 429–436; https://doi.org/10.1038/20859.

  • Pillans, B.; Naish, T., 2004: “Defining the quaternary”, in: Quat. Sci. Rev., 23: 2271–2282; https://doi.org/10.1016/j.quascirev.2004.07.006.

  • Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, R.H.; Roberts, C.M.; Sexton, J.O., 2014: The biodiversity of species and their rates of extinction, distribution, and protection”, in: Science, 344, 6187: 987; https://doi.org/10.1126/science.1246752.

  • Polunin, N.; Grinevald, J., 1988: “Vernadsky and biospheral ecology”, in: Environ. Conservation, 75, 2: 117–123; https://doi.org/10.1017/S0376892900028915.

  • Rambler, M.B.; Margulis, L.; Fester, R. (eds.), 1989: “Global Ecology: Toward a Science of the Biosphere (Boston, Mass.: Academic Press).

    Google Scholar 

  • Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Canadell, J.G.; Frölicher, T.L.; Gasser, T.; Houghton, R.A.; Le Quere, C.; Trudinger, C.M. 2014: “The declining uptake rate of atmospheric CO2 by land and ocean sinks”, in: Biogeosciences, 11: 3453–3475; <https://doi.org/10.5194/bg-11-3453-2014.

  • Remane, J. et al., 1996: “Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS), in: Episodes, 19,3: 77–81.

    Google Scholar 

  • Revkin, A., 1992: Global Warming: Understanding the Forecast (New York: Abbeville Press).

    Google Scholar 

  • Rockström, J. et al., 2009: “A safe operating space for humanity”, in: Nature, 461: 472–475; https://doi.org/10.1038/461472a.

  • Ruddiman, W.F., 2013: “The Anthropocene”, in: Annu. Rev. Earth Planet. Sci., 41: 45–68; https://doi.org/10.1146/annurev-earth-050212-123944.

  • Ruddiman, W.F. et al., 2015: “Late Holocene climate: natural or anthropogenic?”, in: Rev. Geophys., 54: 93–118; https://doi.org/10.1002/2015RG000503.

  • Salvador, A. (ed.), 1994: “International Stratigraphic Guide—A Guide to Stratigraphic Classification, Terminology and Procedure, 2nd ed. (Boulder, Colo: International Union of Geological Sciences and the Geological Society of America).

    Google Scholar 

  • Scheffer, M., 2009: Critical Transitions in Nature and Society (Princeton, N. J.: Princeton Univ. Press).

    Google Scholar 

  • Scheffer, M.; Carpenter, S., 2003: “Catastrophic regime shifts in ecosystems: linking the theory to observation”, in: Trends Ecol. Evol., 18: 656; https://doi.org/10.1016/j.tree.2003.09.002.

  • Schellnhuber, H.J. (1998: “Discourse: Earth System analysis: the scope of the challenge, in Earth System Analysis, edited by H.J. Schellnhuber and V. Wetzel, pp. 3 -195, Springer-Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  • Schellnhuber, H.J., 1999: “‘Earth System’ analysis and the second Copernican revolution”, Nature, 402: C19–C23; https://doi.org/10.1038/35011515.

  • Schellnhuber, H.J. 2009: “Tipping elements in the Earth System”, in: Proc. Natl. Acad. Sci. USA, 106, 49: 20561–20563; https://doi.org/10.1073/pnas.0911106106.

  • Schellnhuber, H.J.; Rahmstorf, S.; Winkelmann, R., 2016: “Why the right climate target was agreed in Paris”, in: Nat. Clim. Change, 6, 653; https://doi.org/10.1038/nclimate3013.

  • Seitzinger, S.P., et al., 2015: “International Geosphere-Biosphere Programme and Earth System science: three decades of co-evolution”, in: Anthropocene, 12: 3–16; https://doi.org/10.1016/j.ancene.2016.01.001.

  • Sluijs, A.; Bowen, G.J.; Brinkhuis, H.; Lourens, L.J.; Thomas, E., 2007: “The Palaeocene-Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change”, in: Williams, M.; Haywood, A.M.; Gregory, F.J.; Schmidt, D.N. (eds.): Deep Time Perspectives on Climate Change: Marrying the Signal From Computer Models and Biological Proxies, Special Publications (London, U. K.: The Geological Society, The Micropalaeontological Society): 323–347.

    Google Scholar 

  • Sluijs, A. et al., 2008: “Eustatic variations during the Paleocene-Eocene greenhouse world”, in: Paleoceanography, 23: PA4216; https://doi.org/10.1029/2008PA001615.

  • Smil, V., 2002: The Earth’s Biosphere: Evolution, Dynamics, and Change (Cambridge, Mass.: The MIT Press).

    Google Scholar 

  • Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P., 2009: “Irreversible climate change due to carbon dioxide emissions”, in: Proc. Natl. Acad. Sci. USA, 106: 1704–1709; https://doi.org/10.1073/pnas.0812721106.

  • Stanley, S.M., 1993: Exploring Earth and Life through Time (New York: W.H. Freeman).

    Google Scholar 

  • Stanley, S.M.; Luciaz, J.A., 2014: Earth System History, 4th ed. (New York: Macmillan).

    Google Scholar 

  • Steffen, W., 2013: “Commentary: Paul J. Crutzen and Eugene F. Stoermer: ‘The Anthropocene’ (2000)”, in: Robin, L.; Sorlin, S.; Warde, P. (eds.): The Future of Nature, (New Haven, Conn. – London: Yale Univ. Press): 486–490.

    Google Scholar 

  • Steffen, W. et al., 2004: Global Change and the Earth System: A Planet under Pressure, The IGBP Book Series (Berlin – Heidelberg – New York: Springer-Verlag).

    Google Scholar 

  • Steffen, W.; Crutzen, P.J.; McNeill, J.R., 2007: “The Anthropocene: are humans now overwhelming the great forces of Nature?”, in: Ambio, 36: 614–621; https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2.

  • Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C., 2015a: “The trajectory of the Anthropocene: The Great Acceleration”, in: Anthropocene Rev., 2, 1: 81–98; https://doi.org/10.1177/2053019614564785.

  • Steffen, W. et al., 2015b: “Planetary boundaries: guiding human development on a changing planet”, in: Science, 347, 6223: 736; https://doi.org/10.1126/science.1259855.

  • Stein, W.E.; Mannolini, F.; Hernick, L.V.; Landing, E.; Berry, C.M., 2007: “Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa”, in: Nature, 446, 7138: 904–907; https://doi.org/10.1038/nature05705.

  • Stewart, W.N.; Rothwell. G.W., 1993: Paleobotany and the Evolution of Plants, 2nd ed., (Cambridge: Cambridge Univ. Press).

    Google Scholar 

  • Summerhayes, C.P.; 2015: Earth’s Climate Evolution (Oxford: Wiley/Blackwell).

    Google Scholar 

  • Syvitski, J. P.M.; Kettner, A.J., 2011: “Sediment flux and the Anthropocene”, in: Phil. Trans. Roy. Soc. Lond. A, 369: 957–997.

    Google Scholar 

  • Tilman, D.; Reich, P.B.; Knops, J.M., 2006: “Biodiversity and ecosystem stability in a decade-long grassland experiment”, in: Nature, 441, 7093: 629–632; <https://doi.org/10.1038/nature04742.

  • UN (United Nations General Assembly), 2015: “Transforming our world: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015, A/RES/70/1, 21 October 2015”; at: <http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E.

  • UNFCCC (United Nations Framework Convention on Climate Change), 2010: “The Cancun Agreements”; at: http://cancun.unfccc.int/cancun-agreements/significanceof-the-key-agreements-reached-at-cancun/.

  • UNFCCC (United Nations Framework Convention on Climate Change), 2015: “Conference of the Parties: Durban Platform for Enhanced Action (decision 1/CP.17) Adoption of a protocol, another legal instrument, or an agreed outcome with legal force under the Convention applicable to all Parties”; at: http://www.cop21.gouv.fr/wpcontent/uploads/2015/12/l09r01.pdf.

  • Valdes, P.J., 2011: “Built for stability”, in: Nat. Geosci., 4: 414–416; https://doi.org/10.1038/ngeo1200.

  • Vernadsky, V.I., 1924: La Géochimie (Paris: Librairie Felix Alcan, Nouvelle Collection scientifique).

    Google Scholar 

  • Vernadsky, V.I., 1929: La Biosphère (Paris: Librairie Felix Alcan, Nouvelle Collection scientifique), second revised and expanded edition.

    Google Scholar 

  • Vernadsky, V.I., 1945: “The Biosphere and the Noösphere”, in: Am. Sci., 33,1: 1–12.

    Google Scholar 

  • Vernadsky, V.I., 1998: “The Biosphere, foreword by Lynn Margulis et al., introduction by Jacques Grinevald, translated by David Langmuir, revised and annotated by Mark A. S. McMenamin; A Peter Nevraumont Book (New York: Copernicus/Springer-Verlag).

    Google Scholar 

  • Vidas, D., 2011: “The Anthropocene and the international law of the sea”, in: Phil. Trans. Roy. Soc. Lond. A, 369: 909–925; https://doi.org/10.1098/rsta.2010.0326.

  • Vidas, D.; Fauchald, O.K.; Jensen, O.; Tvedt, M.W., 2015: “International law for the Anthropocene? Shifting perspectives in regulation of the oceans, environment and genetic resources”, in: Anthropocene, 9: 1–13; https://doi.org/10.1016/j.ancene.2015.06.003.

  • Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D., 2011: “Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia”, in: Nat. Geosci., 4: 698–702; https://doi.org/10.1038/ngeo1238.

  • Waters, C.N. et al., 2016: “The Anthropocene is functionally and stratigraphically distinct from the Holocene”, in: Science, 351, 6269: 137; https://doi.org/10.1126/science.aad2622.

  • WBGU (Schellnhuber, H.J.; Messner, D.; Leggewie, C.; Leinfelder, R.; Nakicenovic, N.; Rahmstorf, S.; Schlacke, S.; Schmid, J.; Schubert, R. [eds.]), 2011: World in Transition—A Social Contract for Sustainability (Berlin: German Advisory Council on Global Change (WBGU); at: http://www.wbgu.de/en/flagship-reports/fr-2011-a-social-contract/.

  • Wellman, C.; Gray, J., 2000: “The microfossil record of early land plants”, in: Phil. Trans. Roy. Soc. Lond. B, 355: 707–732; https://doi.org/10.1098/rstb.2000.0612.

  • Wellman, C.; Osterloff, P.L.; Mohiuddin, U., 2003: “Fragments of the earliest land plants”, in: Nature, 425: 282–285; https://doi.org/10.1038/nature01884.

  • White, J.W.C. et al., 2013: Abrupt Impacts of Climate Change, Anticipating Surprises (Washington, D. C.: National Academies Press).

    Google Scholar 

  • Williams, M.; Zalasiewicz, J.; Haff, P.K.; Schwägerl, C.; Barnosky, A.D.; Ellis, E.C., 2015: “The Anthropocene biosphere”, in: Anthropocene Rev., 2, 3: 196–219; https://doi.org/10.1177/2053019615591020.

  • Williams, M. et al., 2016: “The Anthropocene: a conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere”, in: Earth’s Future, 4: 34–53; https://doi.org/10.1002/2015EF000339.

  • Winguth, A.M.; Thomas, E.; Winguth, C., 2012: “Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene-Eocene thermal maximum: implications for the benthic extinction”, in: Geology, 40, 3; 263–266; https://doi.org/10.1130/G32529.1.

  • Wolfe, A.P. et al., 2013: “Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes”, in: Earth Sci. Rev., 116: 17–34; https://doi.org/10.1016/j.earscirev.2012.11.001.

  • Wolff, E.W., 2011: “Greenhouse gases in the Earth system: a palaeoclimate perspective”, in: Phil. Trans. Roy. Soc. Lond. A, 369, 2133–2147; https://doi.org/10.1098/rsta.2010.0225;pmid: 21502180.

  • Zachos, J.C.; Dickens, G.R.; Zeebe, R.E., 2008: “An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics”, in: Nature, 451: 279–283; https://doi.org/10.1038/nature06588.

  • Zalasiewicz, J.; Williams, M., 2012: The Goldilocks Planet—The Four Billion Year Story of Earth’s Climate (Oxford: Oxford Univ. Press).

    Google Scholar 

  • Zalasiewicz, J.; Williams. M., 2014: “The Anthropocene: a comparison with the Ordovician-Silurian boundary”, in: Rendiconti Lincei—ScienzeFisichee Naturali, 25, 1: 5–12; <https://doi.org/10.1007/s12210-013-0265-x.

  • Zalasiewicz, J.; Williams, M., 2016: “Climate change through Earth’s history”, in: Letcher, T.M. (ed.): Climate Change: Observed Impacts on Planet Earth (Amsterdam: Elsevier): 3–17.

    Google Scholar 

  • Zalasiewicz, J. et al., 2008: “Are we now living in the Anthropocene?”, in: GSA Today, 18: 4–8; https://doi.org/10.1130/GSAT01802A.1.

  • Zalasiewicz, J.; Cita, M.B.; Hilgen, F.; Pratt, B.R.; Strasser, A.T.J.; Weissert, H., 2013: “Chronostratigraphy and geochronology: a proposed realignment”, in: GSA Today, 23, 3: 4–8, https://doi.org/10.1130/GSATG160A.1.

  • Zalasiewicz, J., et al., 2015: “When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal”, in: Quaternary Int., 383: 196–203; https://doi.org/10.1016/j.quaint.2014.11.045.

  • Zalasiewicz, J. et al., 2016: “The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene”, in: Anthropocene, 13: 4–17; https://doi.org/10.1016/j.ancene.2016.01.002.

  • Zeebe, R.E.; Ridgwell, A.; Zachos, J.C., 2016: “Anthropogenic carbon release rate unprecedented during the past 66 million years”, in: Nat. Geosci., 9: 325–329; https://doi.org/10.1038/ngeo2681.

Download references

Acknowledgments

This paper is a contribution of the Anthropocene Working Group. The complex systems interpretation of Earth System dynamics has drawn heavily on the work and insights of Tim Lenton and Marten Scheffer. We are grateful to Greg Heath for assistance with Figs. 17.4 and 17.6. We thank the anonymous reviewers for their insightful comments that have contributed to improve this paper. All data for this paper are properly cited and referred to in the reference list.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Steffen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steffen, W. et al. (2021). Stratigraphic and Earth System Approaches to Defining the Anthropocene (2016). In: Benner, S., Lax, G., Crutzen, P.J., Pöschl, U., Lelieveld, J., Brauch, H.G. (eds) Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History. The Anthropocene: Politik—Economics—Society—Science, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-82202-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82202-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82201-9

  • Online ISBN: 978-3-030-82202-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics