Skip to main content

A Framework for Testing and Evaluation of Operational Performance of Multi-UAV Systems

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

Abstract

In this paper, we propose a data-driven testing and evaluation framework for multi-UAVs to evaluate their performance in executing missions in the physical world. Seven micro-behaviors, termed here as modes of operation, are leveraged to describe the autonomous functionalities of the UAVs. These functionalities are then used to design five scenarios for model training, validation and testing of the proposed framework. Each scenario includes a distinct sequence of behaviors for the UAVs in order for the different autonomous functionalities to be evaluated. We develop and implement a simulation environment using the Robot Operating System (ROS), Gazebo, and the Pixhawk autopilot to generate synthetic data for the training of a classification model. This trained model is then utilized to evaluate the behaviors of the UAVs while performing real-world missions. Finally, the proposed framework is tested using synthetic data generated from a simulation environment and validated using real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Chaki, S., Dolan, J.M., Giampapa, J.A.: Toward a quantitative method for assuring coordinated autonomy. In: Proceedings of ARMS Workshop (2013)

    Google Scholar 

  3. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  4. Cowart, K., Valerdi, R., Kenley, C.R.: Development, validation and implementation considerations of a decision support system for unmanned & autonomous system of systems test & evaluation (2010)

    Google Scholar 

  5. Cui, Z., Ke, R., Pu, Z., Wang, Y.: Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143 (2018)

  6. Djang, P.A., Lopez, F.: Unmanned and autonomous systems mission based test and evaluation. In: Proceedings of the 9th Workshop on Performance Metrics for Intelligent Systems, pp. 81–85 (2009)

    Google Scholar 

  7. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)

    Google Scholar 

  8. Girma, A., et al.: IoT-enabled autonomous system collaboration for disaster-area management. IEEE/CAA J. Automatica Sin. 7(5), 1249–1262 (2020)

    Google Scholar 

  9. Girma, A., Yan, X., Homaifar, A., Driver identification based on vehicle telematics data using LSTM-recurrent neural network. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 894–902. IEEE (2019)

    Google Scholar 

  10. Gonda, N.D.: A framework for test & evaluation of autonomous systems along the virtuality-reality spectrum. Master’s thesis, Old Dominion University, Norfolk, VA, USA (2019)

    Google Scholar 

  11. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  12. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)

    Article  MathSciNet  Google Scholar 

  13. Holden, J., Goel, N.: Fast-forwarding to a future of on-demand urban air transportation, San Francisco, CA (2016)

    Google Scholar 

  14. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  15. Keane, J., Joiner, K.: Experimental test and evaluation of autonomous underwater vehicles. Aust. J. Multi-Discip. Eng. 16(1), 67–79 (2020)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

    Article  Google Scholar 

  18. Leathrum, J.F., Mielke, R.R., Shen, Y., Johnson, H.: Academic/industry educational lab for simulation-based test & evaluation of autonomous vehicles. In: 2018 Winter Simulation Conference (WSC), pp. 4026–4037. IEEE (2018)

    Google Scholar 

  19. Michelson, R.C.: Test and evaluation for fully autonomous micro air vehicles. ITEA J. 29(4), 367–374 (2008)

    Google Scholar 

  20. NASA: Advanced air mobility studies/reports/presentations (2019)

    Google Scholar 

  21. Reitz, B.C., Wilkerson, J.L.: Test and evaluation of autonomous surface vehicles: a case study. In: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 839–850. IEEE (2020)

    Google Scholar 

  22. Roske, V.P., Kohlberg, I., Wagner, R.: Autonomous systems challenges to test and evaluation. In: 28th Conference of National Defense Industrial Association (2012)

    Google Scholar 

  23. Sarkar, M., Homaifar, A., Erol, B.A., Behniapoor, M., Tunstel, E.: PIE: a tool for data-driven autonomous UAV flight testing. J. Intell. Robot. Syst. 98(2), 421–438 (2019). https://doi.org/10.1007/s10846-019-01078-y

    Article  Google Scholar 

  24. Sun, Y., Xiong, G., Song, W., Gong, J., Chen, H.: Test and evaluation of autonomous ground vehicles. Adv. Mech. Eng. 6 (2014). https://doi.org/10.1155/2014/681326

  25. Thompson, M.: Testing the intelligence of unmanned autonomous systems. Technical report, Trideum Corp., Aberdeen, MD (2008)

    Google Scholar 

  26. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Office of the Secretary of Defense (OSD) for the financial support under agreement number FA8750-15-2-0116. This work is also partially funded through the National Institute of Aerospace’s Langley Distinguished Professor Program under grant number C16-2B00-NCAT, and by the NASA University Leadership Initiative (ULI) under grant number 80NSSC20M0161. Also, this work is supported in parts by NSF under grant Nos. CAREER CPS-1851588, S&AS 1849198, and SATC-1801611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Homaifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, M., Yan, X., Nateghi, S., Holmes, B.J., Vamvoudakis, K.G., Homaifar, A. (2022). A Framework for Testing and Evaluation of Operational Performance of Multi-UAV Systems. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_24

Download citation

Publish with us

Policies and ethics