Skip to main content

Forming Predictive Features of Tweets for Decision-Making Support

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

The article describes the approaches for forming different predictive features of tweet data sets and using them in the predictive analysis for decision-making support. The graph theory as well as frequent itemsets and association rules theory is used for forming and retrieving different features from these datasets. The use of these approaches makes it possible to reveal a semantic structure in tweets related to a specified entity. It is shown that quantitative characteristics of semantic frequent itemsets can be used in predictive regression models with specified target variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I., et al.: Fast discovery of association rules. Adv. Knowl. Discov. Data Min. 12(1), 307–328 (1996)

    Google Scholar 

  2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  3. Asur, S., Huberman, B.A.: Predicting the future with social media. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 492–499. IEEE (2010)

    Google Scholar 

  4. Balakrishnan, V., Khan, S., Arabnia, H.R.: Improving cyberbullying detection using twitter users’ psychological features and machine learning. Comput. Secur. 90, 101710 (2020)

    Article  Google Scholar 

  5. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, pp. 49–62 (2009)

    Google Scholar 

  6. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  7. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, pp. 265–276 (1997)

    Google Scholar 

  8. Carpenter, B., et al.: Stan: a probabilistic programming language. J. Stat. Softw. 76(1) (2017)

    Google Scholar 

  9. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in Twitter: the million follower fallacy. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 4 (2010)

    Google Scholar 

  10. Chui, C.K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In: Zhou, Z.H., Li, H., Yang, Q. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2007. LNCS, vol. 4426, pp. 47–58. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71701-0_8

  11. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. InterJ. Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  12. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  13. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC (2013)

    Google Scholar 

  14. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 163–170. IEEE (2001)

    Google Scholar 

  15. Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and social Network Analysis, pp. 56–65 (2007)

    Google Scholar 

  16. Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: Proceedings of the Third International Conference on Information and Knowledge Management, pp. 401–407 (1994)

    Google Scholar 

  17. Kraaijeveld, O., De Smedt, J.: The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. J. Int. Financ. Markets Inst. Money 65, 101188 (2020)

    Article  Google Scholar 

  18. Kruschke, J.: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  19. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600 (2010)

    Google Scholar 

  20. Mahmud, J.: IBM Watson personality insights: the science behind the service. Technical report, IBM (2016)

    Google Scholar 

  21. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  22. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  23. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10, pp. 1320–1326 (2010)

    Google Scholar 

  24. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) Database Theory – ICDT 1999. ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_25

  25. Pavlyshenko, B.M.: Modeling COVID-19 spread and its impact on stock market using different types of data. Electron. Inf. Technol. (14), 3–21 (2020)

    Google Scholar 

  26. Pavlyshenko, B.: Bayesian regression approach for building and stacking predictive models in time series analytics. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds.) DSMP 2020. CCIS, vol. 1158, pp. 486–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61656-4_33

    Chapter  Google Scholar 

  27. Pavlyshenko, B.M.: Forecasting of events by tweets data mining. Electron. Inf. Technol. (10), 71–85 (2018)

    Google Scholar 

  28. Pavlyshenko, B.M.: Can Twitter predict royal baby’s name ? Electron. Inf. Technol. (11), 52–60 (2019)

    Google Scholar 

  29. Pavlyshenko, B.M.: Sales time series analytics using deep q-learning. Int. J. Comput. 19(3), 434–441 (2020). https://computingonline.net/computing/article/view/1892

  30. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, Güngör, T., Gürgen, F., Özturan, C. (eds.) Computer and Information Sciences - ISCIS 2005. ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

  31. Shamma, D., Kennedy, L., Churchill, E.: Tweetgeist: can the Twitter timeline reveal the structure of broadcast events. CSCW Horiz. 589–593 (2010)

    Google Scholar 

  32. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: KDD, vol. 97, pp. 67–73 (1997)

    Google Scholar 

  33. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 2. MIT Press, Cambridge (1998)

    Google Scholar 

  34. Wang, M., Hu, G.: A novel method for Twitter sentiment analysis based on attentional-graph neural network. Information 11(2), 92 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlyshenko, B.M. (2022). Forming Predictive Features of Tweets for Decision-Making Support. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_32

Download citation

Publish with us

Policies and ethics