Skip to main content

Fourier-Sato Transform on Hyperplane Arrangements

  • Chapter
  • First Online:
Representation Theory and Algebraic Geometry

Part of the book series: Trends in Mathematics ((TM))

Abstract

The theory of perverse sheaves can be said to provide an interpolation between homology and cohomology (or to mix them in a self-dual way). Since homology, sheaf-theoretically, can be understood as cohomology with compact support, interesting operations on perverse sheaves usually combine the functors of the types f! and f or, dually, the functors of the types f! and f in the classical formalism of Grothendieck.

To our friends and teachers Sasha Beilinson and Vitya Ginzburg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation ⊕ here and below means direct sum of vector bundles, i.e., fiber product over N.

References

  1. J. Arthur. An introduction to the trace formula. In: “Harmonic Analysis, Trace Formula and Schimura Varieties” (J. Arthur, D. Ellwood, R. Kottwitz Eds.) Clay Math. Proceedings4, Amer. Math. Soc. (2005) 3–263.

    Google Scholar 

  2. A. Beilinson. How to glue perverse sheaves. In: K-theory, arithmetic and geometry (Moscow, 1984), Lecture Notes in Math.1289, Springer-Verlag, (1987) 42–51.

    Google Scholar 

  3. A. Beilinson, J. Bernstein, P. Deligne. Faisceaux pervers. Astérisque100 (1983).

    Google Scholar 

  4. R. Bezrukavnikov, M. Finkelberg, V. Schechtman. Factorizable sheaves and quantum groups. Lecture Notes in Math.1691, Springer-Verlag, (1998).

    Google Scholar 

  5. T. Braden, Hyperbolic localization of intersection cohomology, Transform. Groups, 8 (2003), 209–216.

    Article  MathSciNet  Google Scholar 

  6. P. Deligne, Le formalisme des cycles évanescents. SGA 7, Exp. 13, 14 Lecture Notes in Math.340, Springer-Verlag (1973).

    Google Scholar 

  7. V. Drinfeld, D. Gaitsgory, On a theorem of Braden. Transform. Groups19 (2014) 313–358.

    Article  MathSciNet  Google Scholar 

  8. T. Finis, E. Lapid. On the spectral side of the Arthur’s trace formula—combinatorial setup. Ann. Math.174 (2011) 197–223.

    Article  MathSciNet  Google Scholar 

  9. M. Finkelberg, V. Schechtman. Microlocal approach to Lusztig’s symmetries. arXiv:1401.5885.

    Google Scholar 

  10. M. Kapranov, V. Schechtman. Perverse sheaves over real hyperplane arrangements. Ann. Math.183 (2016) 619–679.

    Article  MathSciNet  Google Scholar 

  11. M. Kashiwara, P. Schapira, Sheaves on Manifolds. Grundlehren der Mathematischen Wissenschaften292, Springer-Verlag, (1990).

    Google Scholar 

  12. Y. Laurent. Théorie de la Deuxième Microlocalization dans le Domaine Complexe. Progress in Math.53, Birkhäuser, Boston, (1985).

    Google Scholar 

  13. R. D. McPherson, K. Vilonen. Elementary construction of perverse sheaves. Invent. Math.84 (1986) 403–435.

    Article  MathSciNet  Google Scholar 

  14. P. Schapira, K. Takeuchi. Déformation binormale et bispecialization. C. R. Acad. Sci.319 (1994) 707–712.

    MathSciNet  MATH  Google Scholar 

  15. K. Takeuchi. Binormal deformation and bimicrolocalization. Publ.RIMS Kyoto Univ.32 (1996) 277–322.

    Article  MathSciNet  Google Scholar 

  16. A. N. Varchenko, Combinatorics and topology of the arrangement of affine hyperplanes in the real space. Funct. Anal. Appl.21 (1987) 11–22.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Schapira for remarks on a preliminary draft of the paper and for communicating to us a proof of Theorem 6.7. We are also grateful to Peng Zhou for several corrections.

The research of M.F. was supported by the grant RSF 19-11-00056.

The research of M.K. was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

V. S. thanks Kavli IPMU for support of a visit during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finkelberg, M., Kapranov, M., Schechtman, V. (2022). Fourier-Sato Transform on Hyperplane Arrangements. In: Baranovsky, V., Guay, N., Schedler, T. (eds) Representation Theory and Algebraic Geometry. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-82007-7_4

Download citation

Publish with us

Policies and ethics