Skip to main content

Kinetic and Kinematic Analysis for Exercise Design: A Practical Approach

  • Chapter
  • First Online:
Resistance Training Methods

Abstract

This chapter introduces the importance to study movement in the sports context, where human performance focuses on the continuous optimization of the physical condition of athletes in specific situations, which often require to be performed at high intensities. To optimize these actions, it is necessary to prioritize strength training, focused on improving useful strength, understood as the application of strength under specific time and velocity conditions per training to competitive exercise (issues reflected in force–velocity and force–time curves). To carry out from practice, it is necessary to monitor, quantify, adapt and prescribe strength training to understand the existing relationship between the external load proposed for the subject and its organic consequences to achieve the adaptations sought and thus optimize performance. To achieve this, it is important to measure and control movement from a mechanical perspective. In this sense, in this chapter, an initial analysis of different methods of strength training through kinetics and kinematics will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CE, Sforzo GA, Sigg JA (2008) The effects of combining elastic and free weight resistance on strength and power in athletes. J Strength Cond Res 22(2):567–574

    Article  Google Scholar 

  • Aragón-Vargas LF, Melissa GM (1997) Kinesiological factors in vertical jump performance: differences among individuals. J Appl Biomech 13(1):24–44

    Article  Google Scholar 

  • Baker DG, Newton RU (2009) Effect of kinetically altering a repetition via the use of chain resistance on velocity during the bench press. J Strength Cond Res 23(7):1941–1946

    Article  Google Scholar 

  • Berning JM, Coker CA, Adams KJ (2004) Using chains for strength and conditioning. Strength Cond J 26(5):80–84

    Article  Google Scholar 

  • Bosco C, Luhtanen P, Komi V (1983) A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol 17:1865–1871

    Google Scholar 

  • Cardoso Marques MA, González-Badillo JJ (2006) In-season resistance training and detraining in professional team handball players. J Strength Cond Res 20(3):563–571

    Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2010) Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc 42(9):1731–1744

    Article  Google Scholar 

  • Cronin J, Sleivert G (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sport Med 35(3):213–234

    Article  Google Scholar 

  • Ebben WP, Jensen RL (2002) Electromyographic and kinetic analysis of traditional, chain, and elastic band squats. J Strength Cond Res 16(4):547–550

    Google Scholar 

  • Edman K (1992) Contractile performance of skeletal muscle fibers. Strength power sport

    Google Scholar 

  • Foster C (2016) Applied exercise physiology: a serendipitous personal journey toward a place that didn’t exist when the journey started. Fronteiras 5(3):172–187

    Article  MathSciNet  Google Scholar 

  • Frost DM, Cronin J, Newton RU (2010) A biomechanical evaluation of resistance—fundamental concepts for training and sports performance. Sport Med 40(4):303–326

    Article  Google Scholar 

  • González-Badillo JJ (2000) Concepto y medida de la fuerza explosiva en el deporte. Posibles aplicaciones al entrenamiento. RED XIV(I):5–16

    Google Scholar 

  • González-Badillo JJ, Gorostiaga E (1995) Fundamentos del entrenamiento de fuerza. Aplicación al alto rendimiento deportivo. InDE, Barcelona

    Google Scholar 

  • González-Badillo JJ, Serna JR (2002) Bases de la programación del entrenamiento de fuerza, 1a. InDE, Barcelona

    Google Scholar 

  • González-Badillo JJ, Gorostiaga EM, Arellano R, Izquierdo M (2005) Moderate resistance training volume produces more favorable strength gains than high or low volumes during a short-term training cycle. J Strength Cond Res 19(3):689–697

    Google Scholar 

  • Hubley C, Wells R (1983) Physiology to vertical jump performance. Eur J Appl Physiol 50:247–254

    Article  Google Scholar 

  • James RS, Navas CA, Herrel A (2007) How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol 210(6):923–933

    Article  Google Scholar 

  • Jaric S, Markovic G (2009) Leg muscles design: the maximum dynamic output hypothesis. Med Sci Sports Exerc 41(4):780–787

    Article  Google Scholar 

  • Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin JB (2014) Effect of countermovement on power–force–velocity profile. Eur J Appl Physiol 114(11):2281–2288

    Article  Google Scholar 

  • Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB (2017) Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol 7

    Google Scholar 

  • Jiménez-Reyes P, Garcia-Ramos A, Párraga-Montilla JA, Morcillo-Losa JA, Cuadrado-Peñafiel V, Castaño-Zambudio A et al (2020) Seasonal changes in the sprint acceleration force-velocity profile of elite male soccer players. J Strength Cond Res

    Google Scholar 

  • Joy JM, Lowery RP, Oliveira De Souza E, Wilson JM (2016) Elastic bands as a component of periodized resistance training. J Strength Cond Res 30(8):2100–2106

    Google Scholar 

  • Kawamori NHG (2004) The optimal training load for the development of muscular power. J Strength Cond Res 18(3):675–684

    MathSciNet  Google Scholar 

  • Komi PV (1994) Strength and power in sport. Med Sci Sports Exerc 26(11):1422

    Google Scholar 

  • Lieber RL, Ward SR (2011) Skeletal muscle design to meet functional demands. Philos Trans R Soc B Biol Sci 366(1570):1466–1476

    Article  Google Scholar 

  • Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116

    Article  Google Scholar 

  • Maroto-Izquierdo S, García-López D, Fernandez-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA (2017) Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport 20(10):943–951

    Google Scholar 

  • Marques MC, van den Tilaar R, Vescovi JD, Gonzalez-Badillo JJ (2007) Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players. Int J Sports Physiol Perform 2(4):414–422

    Google Scholar 

  • McMaster DT, Cronin J, McGuigan M (2009) Forms of variable resistance training. Strength Cond J 31(1):50–64

    Article  Google Scholar 

  • Morin JB, Samozino P (2016) Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform 11(2):267–272

    Article  Google Scholar 

  • Norrbrand L, Fluckey JD, Pozzo M, Tesch PA (2008) Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol 102(3):271–281

    Article  Google Scholar 

  • Núñez FJ, Galiano C, Muñoz-López A, Floria P (2020) Is possible an eccentric overload in a rotary inertia device? Comparison of force profile in a cylinder-shaped and a cone-shaped axis devices. J Sports Sci 38(14):1624–1628

    Article  Google Scholar 

  • Page P, Ellenbecker T (2005) Kinetics H (ed) Strength band training, 3rd ed. Champain, IL, 206 p

    Google Scholar 

  • Petré H, Wernstål F, Mattsson CM (2018) Effects of flywheel training on strength-related variables: a Meta-analysis. Sport Med Open 4(1):55

    Article  Google Scholar 

  • Rassier DE, MacIntosh BR, Herzog W (1999) Length dependence of active force production in skeletal muscle. J Appl Physiol 86(5):1445–1457

    Article  Google Scholar 

  • Rivière M, Louit L, Strokosch A, Seitz LB (2017) Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J Strength Cond Res 31(4):947–955

    Article  Google Scholar 

  • Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945

    Article  Google Scholar 

  • Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB (2012) Optimal force-velocity profile in ballistic movements-altius: citius or fortius? Med Sci Sports Exerc 44(2):313–322

    Article  Google Scholar 

  • Sanchez NFJ, Sáez de Villarreal E, De Villarreal ES (2017) Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11):3177–3186

    Google Scholar 

  • Shoepe TC, Ramirez DA, Rovetti RJ, Kohler DR, Almstedt HC (2011) The effects of 24 weeks of resistance training with simultaneous elastic and free weight loading on muscular performance of novice lifters. J Hum Kinet 29(1):93–106

    Article  Google Scholar 

  • Soriano MA, Jiménez-Reyes P, Rhea MR, Marín PJ (2015) The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sport Med 45(8):1191–1205

    Article  Google Scholar 

  • Spudić D, Smajla D, Šarabon N (2020) Validity and reliability of force–velocity outcome parameters in flywheel squats. J Biomech 107:109824

    Google Scholar 

  • Tillin NA, Folland JP (2014) Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol 114(2):365–374

    Article  Google Scholar 

  • Vandewalle H, Péerès G, Monod H (1987) Standard anaerobic exercise tests. Sport Med Int J Appl Med Sci Sport Exerc 4(4):268–289

    Google Scholar 

  • Worcester KS, Baker PA, Bollinger LM (2020) Effects of inertial load on sagittal plane kinematics of the lower extremity during flywheel-based squats. J Strength Cond Res 1

    Google Scholar 

  • Zatsiorsky V, Kraemer W (2006) Science and practice of strength training. Google Books

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Cuadrado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuadrado, V. (2022). Kinetic and Kinematic Analysis for Exercise Design: A Practical Approach. In: Muñoz-López, A., Taiar, R., Sañudo, B. (eds) Resistance Training Methods. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81989-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81989-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81988-0

  • Online ISBN: 978-3-030-81989-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics