Skip to main content

Image Processing and Analysis for Decision Making Applied to Melanoma

  • Chapter
  • First Online:
Advanced Methods for Human Biometrics

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 40))

  • 313 Accesses

Abstract

Malignant melanoma is considered one of the terrible disorders causing death. The goal of modern dermatology is the early screening of skin cancer, aiming at reducing the mortality rate with less extensive treatment. In this context, this work focuses on the problem of an automatic melanoma diagnosis based on two approaches. The first system is based on the ABCD diagnostic rule widely accepted by clinicians. The second system is based on extracting features and then classifying based on Support Vector Machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi, N.R., Shaw, H.M., Rigel, D.S., Friedman, R.J., McCarthy, W.H., Osman, I. A, Kopf, A. W. A, & Polsky, D. (2004). Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. The Journal of American Medical Association, 292, 771–776.

    Google Scholar 

  • Alfed, N., & Khelifi, F. (2017). Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Systems with Applications, 90, 101–110.

    Google Scholar 

  • Amaliah, B.a, Fatichah, C., Widyanto, M.W. (2010). ABCD feature extraction of image dermoscopic based on morphology analysis for melanoma skin cancer diagnosis. Journal Ilmu Komputer dan Informasi, 3, 82–91.

    Google Scholar 

  • Berner, E. (2009). Clinical decision support systems: State of the art. Agency for Healthcare Research and Quality U.S. Department of Health and Human Services, (pp. 1–26).

    Google Scholar 

  • Bhardwaj, A., Bhatia, J.S. (2014). An image segmentation method for early detection and analysis of melanoma. Journal of Dental and Medical Sciences, 13: 18–22.

    Google Scholar 

  • Celebi, M. E. A., Stoecker, W. V. A., & Moss, R. H. (2011). Advances in skin cancer image analysis. Computerized Medical Imaging and Graphics, 35, 83–84.

    Google Scholar 

  • Dalila, F., Zohra, A., Reda, K., & Hocine, C. (2017). Segmentation and classification of melanoma and benign skin lesions. Optik - Int. Journal for Light and Electron Optics, 140, 749–761.

    Article  Google Scholar 

  • Fatichah, C. A, Amaliah, B. A, & Widyanto, M. R. (2009) . Skin lesion detection using fuzzy region growing and ABCD feature extraction for melanoma skin cancer diagnosis. In: Proceedings of Industrial Informatics Seminar.

    Google Scholar 

  • Fondon, I., Serrano, C., & Acha, B. (2007) . Segmentation of skin cancer images based on multistep region growing. In Proceedings of the IAPR Conference on Machine Vision Applications (pp. 8–28).

    Google Scholar 

  • Grammatikopoulous, G., Hatzigaidas, A., Papastergiou, A., Lazardis, P., Zaharis, Z., Kampitaki, D., & Tryfon, G. (2006). Automated malignant melanoma detection using matlab. In 5th WSEAS International Conference on Data Networks, Communications and Computers At Bucharest, Romania (pp. 91–94).

    Google Scholar 

  • Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Trans. on Acoustics. Speech, and Signal Processing, 27, 13–18.

    Article  Google Scholar 

  • Ins Les traitements du mélanome de la peau. Cancer Info (2016)

    Google Scholar 

  • Jain, S., Jagtap, V., Pise, N. (2015). Computer aided melanoma skin cancer detection using image processing. Procedia Computer Science, 48: 734–750.

    Google Scholar 

  • Joanna, J. K. (2016) . Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines.BioMed Research International, 1–8.

    Google Scholar 

  • Liao, P.S., Chen, T.S., Chung, P.C. (2001) . A fast algorithm for multilevel thresholding. Journal of Information Science And Engineering, 17: 713–727.

    Google Scholar 

  • Lopes, R. (2009). Analyses fractale et multifractale en imagerie mãcdicale: Outils, validations et applications. UniversitÃcde Lille 1.

    Google Scholar 

  • Masood, A., Aljumaily, A. A., Hoshayr, A., & N., Masood, O. (2013). Fuzzy c mean thresholding based level set for automated segmentation of skin lesions. Journal of Signal and Information Processing, 4, 66–71.

    Google Scholar 

  • Maglogiannis, I., & Doukas, C. N. (2009). Overview of advanced computer vision systems for skin lesions characterization. IEEE Transactions on Information Technology in Biomedicine, 13, 721–733.

    Google Scholar 

  • Mendonca, T. (2013). Ph2, a dermoscopic image database for research and benchmarking. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

    Google Scholar 

  • Ojala, T., & Pietikãinen, M. A, & Harwood, D. A. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29, 51–59.

    Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. on Systems. Man, and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Ozkan, I. A., & Koklu, M. (2017). Skin lesion classification using machine learning algorithms. Int. Journal of Intelligent Systems and Applications in Engineering, 4, 285–289.

    Article  Google Scholar 

  • Pennisi, A. A., Bloisi, D. D. A., Nardi, D. A, Giampetruzzi, A. R. A, Mondino, C. A., & Facchiano, A. (2016). Skin lesion image segmentation using delaunay triangulation for melanoma detection. Computerized Madical Imaging and Graphics, 52, 89–103.

    Google Scholar 

  • Peruch, F., Bogo, F., Bonazza, M. A, Cappelleri, V. M. A, & Peserico, E. (2014). Simpler, faster, more accurate melanocytic lesion segmentation through meds. IEEE Transactions on Biomedical Engineering, 61, 557–565.

    Google Scholar 

  • PreethaL, M. M. S. J., Suresh, L. P., & Bosco, M. J. (2012) . Image segmentation using seeded region growing. In International Conference on Computing, Electronics and Electrical Technologies.

    Google Scholar 

  • Riaz, F., Hassan, A., Javed, M. Y., & Coimbra, M. T. (2014). Detecting melanoma in dermoscopy images using scale adaptive local binary patterns. In Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE (pp 6758–6761).

    Google Scholar 

  • Sadri, A. R. A, Azarianpour, S., Zekri, M., Celebi, M. E. A, & Sadri, S. (2017). Wn-based approach to melanoma diagnosis from dermoscopy images. IET Image Processing, 11, 475–482.

    Google Scholar 

  • Silveira, M., Nascimento, J. C., Marques, J. S., Marcal, A. R. S. A., Mendonca, T., Yamauchi, S., Maeda, J., & Rozeira, J. (2009). Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE Journal of Selected Topics in Signal Processing, 3, 35–45.

    Google Scholar 

  • Soille, P. (2004). Morphological image analysis. GmbH (vol. 2, pp. 1–15). Berlin Heidelberg: Springer.

    Google Scholar 

  • Stolz, W., Reimann, A. L. G., & Cognetta, A. B. (1994). Abcd rule of dermatoscopy: A new practical method for early recognition of malignant melanoma. European Journal of Dermatology, 4, 521–527.

    Google Scholar 

  • Tadeusiewicz, R. (2010). Place and role of intelligent systems in computer science. Computer Methods In Materials Science, 10: 193–206.

    Google Scholar 

  • Turkar, V. (2012) . Melanoma decision support system for dermatologist. In International Conference on Recent Trends in Information Technology and Computer Science (pp. 28–30).

    Google Scholar 

  • Vapnik, V. (2000). The nature of statistical learning theory. Springer (p. 314).

    Google Scholar 

  • Westerink, P. H. A., Biemond, J., & Boekee, D. E. (1991). Subband coding of color images. The Springer International Series in Engineering and Computer Science, 15, 193–227.

    Google Scholar 

  • Xie, F., Bovik, A.C. (2013). Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognition, 46: 1012–1019.

    Article  ADS  Google Scholar 

  • Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P. A. (2017). Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Transactions on Medical Imaging, 36, 994–1004.

    Google Scholar 

  • Yuan, Y. A., Chao, M. A., & Lo, Y. C. (2017). Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Transactions on Medical Imaging, 36, 1876–1886.

    Google Scholar 

  • Zack, G. W. A., Rogers, W. E. A., & Latt, S. A. (1977). Automatic measurement of sister chromatid exchange frequency. The Journal of Histochemistry and Cytochemistry, 25, 741–753.

    Google Scholar 

  • Zucker, S. W. (1976). Region growing: Childhood and adolescence. Computer Graphics and Image Processing, 5, 382–399.

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.99–2013.06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Smaoui Zghal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zghal, N.S. (2021). Image Processing and Analysis for Decision Making Applied to Melanoma. In: Derbel, N., Kanoun, O. (eds) Advanced Methods for Human Biometrics. Smart Sensors, Measurement and Instrumentation, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-030-81982-8_12

Download citation

Publish with us

Policies and ethics