Skip to main content

Chaos in p-adic Statistical Lattice Models: Potts Model

  • Chapter
  • First Online:
Advances in Non-Archimedean Analysis and Applications

Abstract

It is known that models of interacting systems have been intensively studied in the last years and new methodologies have been developed in the attempt to understanding their intriguing features. One of the most promising directions is the combination of statistical mechanics tools with the methods adopted from dynamical systems. One of such tools is the renormalization group (RG) which has had a profound impact on modern statistical physics. This approach in statistical mechanics yielded lots of interesting results. These investigations shaded light into phase transitions problem of spin models on lattices models. In the present work, we are going to review recent development on the RG method to p-adic lattice models on Cayley trees. It turned out that the investigation of RG transformation is strongly tied up with associated p-adic dynamical system. In this paper, we provide recent results on the existence of the phase transition and its relation to the chaotic behavior of the associated p-adic dynamical system. We restrict ourselves to the p-adic q-state Potts model on a Cayley tree. Our approach uses the theory of p-adic measure and non-Archimedean stochastic processes. One of the main tools of the detection of the phase transition is the existence of several p-adic Gibbs measures. The advantage of the non-Archimedeanity of the norm allowed us rigorously to prove the existence of the chaos. We point out that In the real case, analogous results with rigorous proofs are not known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad M.A.Kh., Liao L.M. Saburov M. Periodic p-adic Gibbs measures of q-state Potts model on Cayley tree: the chaos implies the vastness of p-adic Gibbs measures, J. Stat. Phys., 171:6 (2018), 1000–1034.

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio S., Khrennikov A., Cianci R., On the Fourier transform and the spectral properties of the p-adic momentum and Schrodinger operators. J. Phys. A, Math. and General, 30 (1997) 5767–5784.

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio S., Khrennikov A., Cianci R., A representation of quantum field hamiltonian in a p-adic Hilbert space. Theor. Math. Phys., 112 (1997) 1081–1096.

    Article  MathSciNet  MATH  Google Scholar 

  4. Albeverio S., Khrennikov A., Cianci R., On the spectrum of the p-adic position operator. J. Phys. A, Math. and General, 30(1997), 881–889.

    Article  MathSciNet  MATH  Google Scholar 

  5. Albeverio S., Cianci R., Khrennikov A. Yu., p-adic valued quantization. P-Adic Numbers, Ultrametric Anal. Appl., 1 (2009), 91–104.

    Google Scholar 

  6. Arrowsmith D.K., Vivaldi F., Some p −adic representations of the Smale horseshoe, Phys. Lett. A 176(1993), 292–294.

    Article  MathSciNet  Google Scholar 

  7. Arrowsmith D.K., Vivaldi F., Geometry of p-adic Siegel discs. Physica D, 71(1994), 222–236.

    Article  MathSciNet  MATH  Google Scholar 

  8. Arroyo-Ortiz E., Zuniga-Galindo W.A., Construction of p-Adic Covariant Quantum Fields in the Framework of White Noise Analysis, Rep. Math. Phys. 84(2019), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ananikian N.S., Dallakian S.K., Hu B., Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q < 2, Complex Systems, 11 (1997), 213–222.

    MathSciNet  MATH  Google Scholar 

  10. Anashin V., Khrennikov A., Applied Algebraic Dynamics, Walter de Gruyter, Berlin, New York, 2009.

    Book  MATH  Google Scholar 

  11. Albeverio S., Rozikov U., Sattarov I.A., p-adic (2,  1)-rational dynamical systems, J. Math. Anal. Appl., 398 (2013), 553–566.

    Google Scholar 

  12. Avetisov V.A., Bikulov A.H., Kozyrev S.V. Application of p-adic analysis to models of spontaneous breaking of the replica symmetry, J. Phys. A: Math. Gen. 32(1999) 8785–8791.

    Article  MATH  Google Scholar 

  13. Baxter R.J., Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.

    MATH  Google Scholar 

  14. Benedetto R., Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, 86 (2001), 175–195.

    Article  MathSciNet  MATH  Google Scholar 

  15. Benedetto R., Hyperbolic maps in p-adic dynamics, Ergod. Th.& Dynam. Sys. 21 (2001), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bogachev V., Measure theory, Springer, Berlin, 2007.

    Book  MATH  Google Scholar 

  17. Bogachev L.V., Rozikov U.A., On the uniqueness of Gibbs measure in the Potts model on a Cayley tree with external field, J. Stat. Mech.: Theory and Exper., (2019) 073205

    Google Scholar 

  18. Bosco F.A., Jr Goulart R.S., Fractal dimension of the Julia set associated with the Yang-Lee zeros of the ising model on the Cayley tree, Europhys. Let. 4 (1987) 1103–1108.

    Article  Google Scholar 

  19. Casas J.M., Omirov B.A., Rozikov U.A, Solvability criteria for the equation x q = a in the field of p-adic numbers, Bull. Malays. Math. Sci. Soc., 37(2014), 853–864.

    MathSciNet  MATH  Google Scholar 

  20. Derrida B., Seze L. De., Itzykson C. Fractal structure of zeros in hierarchical models, J. Stat. Phys. 33(1983) 559–569.

    Google Scholar 

  21. Diao H., Silva C.E., Digraph representations of rational functions over the p-adic numbers, p-Adic Numbers, Ultametric Anal. Appl. 3 (2011), 23–38.

    Article  MathSciNet  MATH  Google Scholar 

  22. Dobrushin R.L. The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Funct.Anal. Appl. 2 (1968) 302–312.

    Article  MathSciNet  MATH  Google Scholar 

  23. Dobrushin R.L. Prescribing a system of random variables by conditional distributions, Theor. Probab. Appl. 15(1970) 458–486.

    Article  MATH  Google Scholar 

  24. Dragovich B., Khrennikov A., Mihajlovic D. Linear fraction p-adic and adelic dynamical systems, Rep. Math. Phys. 60(2007) 55–68.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., On p-adic mathematical physics, p-Adic Numbers, Ultrametric Analysis and Appl. 1 (2009), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  26. Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., Zelenov E. I., p -Adic Mathematical Physics: The First 30 Years. p-Adic Numbers Ultrametric Anal. Appl. 9 (2017), 87–121.

    Google Scholar 

  27. Efetov K.B., Supersymmetry in disorder and chaos, Cambridge Univ. Press, Cambrdge, 1997.

    MATH  Google Scholar 

  28. Eggarter T.P., Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B 9 (1974) 2989–2992.

    Article  Google Scholar 

  29. Georgii H.O. Gibbs measures and phase transitions, Walter de Gruyter, Berlin, 1988.

    Book  MATH  Google Scholar 

  30. Gyorgyi G., Kondor I., Sasvari L., Tel T., From phase transitions to chaos, World Scientific, Singapore, 1992.

    Book  MATH  Google Scholar 

  31. Gandolfo D., Rozikov U., Ruiz J. On p-adic Gibbs measures for hard core model on a Cayley Tree, Markov Proc. Rel. Topics 18(2012) 701–720.

    MathSciNet  MATH  Google Scholar 

  32. Ganikhodjaev N.N., On pure phases of the three-state ferromagnetic Potts model on the Bethe lattice order two, Theor. Math. Phys. 85 (1990) 163–175.

    Google Scholar 

  33. Ganikhodjaev N.N., Mukhamedov F.M., Rozikov U.A. Phase transitions of the Ising model on \({\mathbb Z}\) in the p-adic number field, Uzbek. Math. Jour. 4 (1998) 23–29 (Russian).

    MathSciNet  Google Scholar 

  34. Ganikhodjaev N.N., Mukhamedov F.M., Rozikov U.A. Phase transitions of the Ising model on \({\mathbb Z}\) in the p-adic number field, Theor. Math. Phys. 130 (2002), 425–431.

    Article  Google Scholar 

  35. Herman M., Yoccoz J.-C., Generalizations of some theorems of small divisors to non-Archimedean fields, In: Geometric Dynamics Rio de Janeiro, 1981, Lec. Notes in Math. 1007, Springer, Berlin, 1983, pp. 408–447.

    Google Scholar 

  36. Fan A.H., Liao L.M., Wang Y.F., Zhou D., p-adic repellers in Q p are subshifts of finite type, C. R. Math. Acad. Sci Paris, 344 (2007), 219–224.

    Article  MathSciNet  MATH  Google Scholar 

  37. Fan A.H., Fan S.L., Liao L.M., Wang Y.F., On minimal deecomposition of p-adic homographic dynamical systems, Adv. Math. 257(2014) 92–135.

    Article  MathSciNet  MATH  Google Scholar 

  38. Fan A.H., Fan S.L., Liao L.M., Wang Y.F., Minimality of p-adic rational maps with good reduction, Discrete Cont. Dyn. Sys. 37(2017), 3161–3182.

    Article  MathSciNet  MATH  Google Scholar 

  39. Feynman R.P. Negative Probability, in Quantum Implications, Essays in Honour of David Bohm, Ed. by B. J. Hiley and F. D. Peat, Routledge and Kegan Paul, London, 1987, pp. 235–246.

    Google Scholar 

  40. Ilic-Stepic A., Ognjanovic Z., Ikodinovic N., Perovic A., p-adic probability logics, p-Adic Num. Ultra. Anal. Appl. 8 (2016), 177–203.

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaneko H., Kochubei A.N., Weak solutions of stochastic differential equations over the field of p-adic numbers, Tohoku Math. J. 59(2007), 547–564.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kaplan S., A survey of symbolic dynamics and celestial mechanics, Qualitative Theor. Dyn. Sys., 7 (2008), 181–193.

    Article  MathSciNet  MATH  Google Scholar 

  43. Katsaras A.K. Extensions of p-adic vector measures, Indag. Math.N.S. 19 (2008) 579–600.

    Article  MathSciNet  MATH  Google Scholar 

  44. Katsaras A.K. On spaces of p-adic vector measures, P-Adic Numbers, Ultrametric Analysis, Appl. 1 (2009) 190–203.

    Article  MathSciNet  MATH  Google Scholar 

  45. Katsaras A.K. On p-adic vector measures, Jour. Math. Anal. Appl. 365 (2010), 342–357.

    Article  MathSciNet  MATH  Google Scholar 

  46. Kochubei A.N. Pseudo-differential equations and stochastics over non-Archimedean fields, Mongr. Textbooks Pure Appl. Math. 244 Marcel Dekker, New York, 2001.

    Google Scholar 

  47. Kozyrev S.V., Wavelets and spectral analysis of ultrametric pseudodifferential operators Sbornik Math. 198(2007), 97–116.

    Google Scholar 

  48. Khakimov O. N., On a generalized p-adic gibbs measure for Ising Model on trees, p-Adic Numbers, Ultrametric Anal. Appl. 6 (2014) 105–115.

    Google Scholar 

  49. Khakimov O.N., p-adic Gibbs quasi measures for the Vannimenus model on a Cayley tree, Theor. Math. Phys. 179(2014) 395–404.

    Article  MATH  Google Scholar 

  50. Khamraev M., Mukhamedov F.M. On p-adic λ-model on the Cayley tree, J. Math. Phys. 45(2004) 4025–4034.

    Article  MathSciNet  MATH  Google Scholar 

  51. Khamraev M., Mukhamedov F.M., Rozikov U.A. On uniqueness of Gibbs measure for p-adic λ-model on the Cayley tree, Lett. Math. Phys. 70(2004), No. 1, 17–28

    Google Scholar 

  52. Khamraev M., Mukhamedov F.M. On a class of rational p-adic dynamical systems, J. Math. Anal. Appl. 315 (2006), 76–89.

    Article  MathSciNet  MATH  Google Scholar 

  53. Khrennikov A. YU., p-Adic Description of Dirac’s Hypothetical World with Negative Probabilities, Int. J. Theor. Phys. 34(1995), 2423–2434.

    Google Scholar 

  54. Khrennikov A., p-adic valued probability measures, Indag. Mathem. N.S., 7 (1996) 311–330.

    Article  MathSciNet  MATH  Google Scholar 

  55. Khrennikov A., Non-Archimedean analysis and its applications. Nauka, Fizmatlit, Moscow, 2003 (in Russian).

    MATH  Google Scholar 

  56. Khrennikov A.Yu. Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Kluwer Academic Publisher, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  57. Khrennikov A., p-adic description of chaos., In: Nonlinear Physics: Theory and Experiment. Editors E. Alfinito, M. Boti., World Scientific, Singapore, 1996, pp. 177–184.

    Google Scholar 

  58. Khrennikov A.Yu., Generalized probabilities taking values in non-Archimedean fields and in topological Groups, Russian J. Math. Phys. 14 (2007), 142–159.

    Article  MathSciNet  MATH  Google Scholar 

  59. Khrennikov A.Yu., Kozyrev S.V., Ultrametric random field, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(2006), 199–213.

    Article  MathSciNet  MATH  Google Scholar 

  60. Khrennikov A.Yu., Kozyrev S.V., Replica symmetry breaking related to a general ultrametric space I,II,III, Physica A, 359(2006), 222–240; 241–266; 378(2007), 283–298.

    Google Scholar 

  61. Khrennikov A.Yu., Kozyrev S.V., Zuniga-Galindo W.A., Ultrametric Pseudodifferential Equations and Applications, Cambridge Univ. Press, 2018.

    Book  MATH  Google Scholar 

  62. Khrennikov A.Yu., Ludkovsky S. Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields, Markov Process. Related Fields 9(2003) 131–162.

    MathSciNet  MATH  Google Scholar 

  63. Khrennikov A.Yu., Ludkovsky S., On infinite products of non-Archimedean measure spaces, Indag. Math. N. S. 13(2002), 177–183.

    Article  MathSciNet  MATH  Google Scholar 

  64. Khrennikov A.Yu., Mukhamedov F., On uniqueness of Gibbs measure for p-adic countable state Potts model on the Cayley tree, Nonlin. Analysis: Theor. Methods Appl. 71 (2009), 5327–5331.

    Article  MathSciNet  MATH  Google Scholar 

  65. Khrennikov A., Mukhamedov F., Mendes J.F.F. On p-adic Gibbs measures of countable state Potts model on the Cayley tree, Nonlinearity 20(2007) 2923–2937.

    Article  MathSciNet  MATH  Google Scholar 

  66. Khrennikov A.Yu., Nilsson M. p-adic deterministic and random dynamical systems, Kluwer, Dordreht, 2004.

    Google Scholar 

  67. Khrennikov A.Yu., Yamada S., van Rooij A., Measure-theoretical approach to p-adic probability theory, Annals Math. Blaise Pascal 6 (1999) 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  68. Koblitz N., p-adic numbers, p-adic analysis and zeta-function, Berlin, Springer, 1977.

    Google Scholar 

  69. Kolmogorov A.N. Foundations of the Probability Theory, Chelsey, New York, 1956.

    MATH  Google Scholar 

  70. Kulske C., Rozikov U.A., Khakimov R.M., Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree, J. Stat. Phys. 156 (1) (2013), 189–200.

    Article  MATH  Google Scholar 

  71. Le Ny A., Liao L., Rozikov U.A., p-adic boundary laws and Markov chains on trees, Lett. Math. Phys. doi.org/10.1007/s11005-020-01316-7.

    Google Scholar 

  72. Lubin J., Nonarchimedean dynamical systems, Composito Math., 94 (1994), 321–346.

    MATH  Google Scholar 

  73. Ludkovsky S. Stochastic processes and their spectral representations over non-archimedean fields, J. Math. Sci. 185(2012), 65–124.

    Article  MathSciNet  MATH  Google Scholar 

  74. von Mises R., The Mathematical Theory of Probability and Statistics, Academic, London, 1964.

    MATH  Google Scholar 

  75. Muckenheim W., A Review on Extended Probabilities, Phys. Rep. 133(1986), 338–401.

    Article  MathSciNet  Google Scholar 

  76. Monna A., Springer T., Integration non-Archim’edienne 1, 2. Indag. Math. 25 (1963) 634–653.

    Article  MATH  Google Scholar 

  77. Monroe J.L. Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems, J. Phys. A: Math. Gen., 34 (2001), 6405–6412

    Article  MathSciNet  MATH  Google Scholar 

  78. Mukhamedov F., On a recursive equation over p-adic field, Appl. Math. Lett. 20(2007), 88–92.

    Article  MathSciNet  MATH  Google Scholar 

  79. Mukhamedov F., On existence of generalized Gibbs measures for one dimensional p-adic countable state Potts model, Proc. Steklov Inst. Math. 265 (2009), 165–176.

    Article  MathSciNet  MATH  Google Scholar 

  80. Mukhamedov F., On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree, P-adic Numbers, Ultametric Anal. Appl. 2(2010), 241–251.

    Article  MathSciNet  MATH  Google Scholar 

  81. Mukhamedov F.M., Existence of P-adic quasi Gibbs measure for countable state Potts model on the Cayley tree, J. Ineqal. Appl. 2012, 2012:104.

    Article  MATH  Google Scholar 

  82. Mukhamedov F., Dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two, Rep. Math. Phys., 70 (2012), 385–406.

    Article  MathSciNet  MATH  Google Scholar 

  83. Mukhamedov F., On dynamical systems and phase transitions for q + 1-state p-adic Potts model on the Cayley tree, Math. Phys. Anal. Geom., 53 (2013) 49–87.

    Article  MathSciNet  MATH  Google Scholar 

  84. Mukhamedov F., Recurrence equations over trees in a non-Archimedean context, P-adic Numb. Ultra. Anal. Appl. 6(2014), 310–317.

    Article  MathSciNet  MATH  Google Scholar 

  85. Mukhamedov F. On strong phase transition for one dimensional countable state P-adic Potts model, J. Stat. Mech. (2014) P01007.

    Google Scholar 

  86. Mukhamedov F., Renormalization method in p-adic λ-model on the Cayley tree, Int. J. Theor. Phys., 54 (2015), 3577–3595.

    Article  MathSciNet  MATH  Google Scholar 

  87. Mukhamedov F., Akin H. Phase transitions for P-adic Potts model on the Cayley tree of order three, J. Stat. Mech. (2013), P07014.

    Google Scholar 

  88. Mukhamedov F., Akin H. The p-adic Potts model on the Cayley tree of order three, Theor. Math. Phys. 176 (2013), 1267–1279.

    Article  MathSciNet  MATH  Google Scholar 

  89. Mukhamedov F., Akin H., On non-Archimedean recurrence equations and their applications, J. Math. Anal. Appl. 423 (2015), 1203–1218.

    Article  MathSciNet  MATH  Google Scholar 

  90. Mukhamedov F., Akin H., Dogan M. On chaotic behavior of the p-adic generalized Ising mapping and its application, J. Difference Eqs Appl. 23(2017), 1542–1561.

    MATH  Google Scholar 

  91. Mukhamedov F., Dogan M., On p-adic λ-model on the Cayley tree II: phase transitions, Rep. Math. Phys. 75 (2015), 25–46.

    Article  MathSciNet  MATH  Google Scholar 

  92. Mukhamedov F., Khakimov O. On Periodic Gibbs Measures of p-Adic Potts Model on a Cayley Tree, p-Adic Numbers, Ultr. Anal.Appl., 8(2016)225–235.

    Article  MathSciNet  MATH  Google Scholar 

  93. Mukhamedov F., Khakimov O. Phase transition and chaos: p-adic Potts model on a Cayley tree, Chaos, Solitons & Fractals 87(2016), 190–196.

    Article  MathSciNet  MATH  Google Scholar 

  94. Mukhamedov F., Khakimov O., On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems, Dynamical Systems 31 (2016), 506–524.

    Article  MathSciNet  MATH  Google Scholar 

  95. Mukhamedov F., Khakimov O., On generalized self-similarity in p-adic field, Fractals, 24 (2016), No. 4, 16500419.

    Google Scholar 

  96. Mukhamedov F., Khakimov O., On Julia set and chaos in p-adic Ising model on the Cayley tree, Math. Phys. Anal. Geom. 20 (2017) 23.

    Article  MathSciNet  MATH  Google Scholar 

  97. Mukhamedov F., Khakimov O., Chaotic behaviour of the p-adic Potts-Bethe mapping, Disc. Cont. Dyn. Syst. 38(2018), 231–245.

    Article  MATH  Google Scholar 

  98. Mukhamedov F., Khakimov O., Chaotic behaviour of the p-adic Potts-Bethe mapping II, Ergodic Theory Dyn Sys. https://doi.org/10.1017/etds.2021.96

  99. Mukhamedov F., Khakimov O., On equation x k = a over Q p and its applications, Izvestiya Math. 84 (2020), 348–360.

    Article  Google Scholar 

  100. Mukhamedov F.M., Mendes J.F.F., On the chaotic behavior of a generalized logistic p-adic dynamical system, J. Diff. Eqs. 243 (2007), 125–145

    Article  MathSciNet  MATH  Google Scholar 

  101. Mukhamedov F., Omirov B., Saburov M., On cubic equations over p-adic field. Int. J. Number Theory 10 (2014), 1171–1190.

    Article  MathSciNet  MATH  Google Scholar 

  102. Mukhamedov F., Saburov M, On equation x q = a over \({\mathbb {Q}}_p\), J. Number Theor., 133, (2013), 55–58.

    Google Scholar 

  103. Mukhamedov F., Saburov M., Khakimov O., On p-adic Ising-Vannimenus model on an arbitrary order Cayley tree, J. Stat. Mech. (2015), P05032

    Google Scholar 

  104. Mukhamedov F., Saburov M., Khakimov O., Translation-invariant p-adic quasi Gibbs measures for the Ising-Vannimenus model on a Cayley tree, Theor. Math. Phys., 187(1), (2016), 583–602.

    Article  MathSciNet  MATH  Google Scholar 

  105. Mukhamedov F.M., Rozikov U.A., On rational p-adic dynamical systems, Methods of Funct. Anal. and Topology, 10 (2004), No.2, 21–31

    MathSciNet  MATH  Google Scholar 

  106. Mukhamedov F.M., Rozikov U.A. On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. N.S. 15 (2004) 85–100.

    Article  MathSciNet  MATH  Google Scholar 

  107. Mukhamedov F.M., Rozikov U.A. On inhomogeneous p-adic Potts model on a Cayley tree, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8(2005) 277–290.

    Article  MathSciNet  MATH  Google Scholar 

  108. Mukhamedov F., Rozikov U., Mendes J.F.F. On Phase Transitions for p-Adic Potts Model with Competing Interactions on a Cayley Tree, AIP Conf. Proc. 826(2006) 140–150.

    Article  MathSciNet  MATH  Google Scholar 

  109. Ostilli M., Cayley Trees and Bethe Lattices: A concise analysis for mathematicians and physicists, Physica A, 391 (2012) 3417–3423.

    Article  MathSciNet  Google Scholar 

  110. Peruggi, F., di Liberto F., Monroy G., Phase diagrams of the q-state Potts model on Bethe lattices. Phys. A 141 (1987), 151–186.

    Article  MathSciNet  Google Scholar 

  111. Peruggi, F., di Liberto F., Monroy G., The Potts model on Bethe lattices. I. General results. J. Phys. A 16 (1983), 811–827.

    Google Scholar 

  112. Qiu W.Y., Wang Y.F., Yang J.H., Yin Y.C., On metric properties of limiting sets of contractive analytic non-Archimedean dynamical systems, J. Math. Anal. App., 414 (2014) 386–401.

    Article  MATH  Google Scholar 

  113. Rahmatullaev M. M., Khakimov O. N., Tukhtaboev A. M., A p-adic generalized Gibbs measure for the Ising model on a Cayley tree. Theor. Math. Phys., 201(1), (2019) 1521–1530.

    Article  MathSciNet  MATH  Google Scholar 

  114. Rivera-Letelier J., Dynamics of rational functions over local fields, Astérisque, 287 (2003), 147–230.

    MATH  Google Scholar 

  115. van Rooij A., Non-archimedean functional analysis, Marcel Dekker, New York, 1978.

    MATH  Google Scholar 

  116. Rozikov U.A. Gibbs Measures on Cayley Trees, World Scientific, 2013.

    Book  MATH  Google Scholar 

  117. Rozikov U. A., Khakimov O. N., Description of all translation-invariant p-dic Gibbs measures for the Potts model on a Cayley tree, Markov Proces. Rel. Fields, 21 (2015), 177–204.

    MATH  Google Scholar 

  118. Rozikov U. A., Khakimov O. N. p-adic Gibbs measures and Markov random fields on countable graphs, Theor. Math. Phys. 175 (2013), 518–525.

    Article  MathSciNet  MATH  Google Scholar 

  119. Rozikov U.A., Tugyonov Z.T., Construction of a set of p-adic distributions, Theor.Math. Phys. 193(2017), 1694–1702.

    Article  MathSciNet  MATH  Google Scholar 

  120. Saburov M., Ahmad M.A.Kh., On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three, Math. Phys. Anal. Geom., 18 (2015) 26.

    Article  MathSciNet  MATH  Google Scholar 

  121. Schikhof W. H., Ultrametric calculus. An introduction to p-adic analysis. Cambridge: Cambridge University Press 1984.

    MATH  Google Scholar 

  122. Silverman J.H. The arithmetic of dynamical systems, New York, Springer, 2007.

    Book  MATH  Google Scholar 

  123. Thiran E., Verstegen D., Weters J., p-adic dynamics, J. Stat. Phys., 54 (1989), 893–913.

    Article  MathSciNet  MATH  Google Scholar 

  124. Vladimirov V.S., Volovich I.V., Zelenov E.I. p -adic Analysis and Mathematical Physics, World Scientific, Singapour, 1994.

    Google Scholar 

  125. Volovich I.V. p −adic string, Classical Quantum Gravity 4 (1987) L83-L87.

    Article  MathSciNet  Google Scholar 

  126. Wilson K.G., Kogut J., The renormalization group and the 𝜖- expansion, Phys. Rep. 12 (1974), 75–200.

    Article  Google Scholar 

  127. Woodcock C.F., Smart N.P., p-adic chaos and random number generation, Experiment Math. 7 (1998) 333–342.

    Article  MathSciNet  MATH  Google Scholar 

  128. Wu F.Y., The Potts model, Rev. Mod. Phys. 54 (1982) 235–268.

    Article  MathSciNet  Google Scholar 

  129. Zuniga-Galindo W.A., Torba S.M., Non-Archimedean Coulomb gases, J. Math. Phys. 61(2020), 013504.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the UAEU UPAR Grant No. G00003247 (Fund No. 31S391). The authors are thankful to an anonymous reviewer for his/her useful suggestions which improved the text of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhamedov, F., Khakimov, O. (2021). Chaos in p-adic Statistical Lattice Models: Potts Model. In: Zúñiga-Galindo, W.A., Toni, B. (eds) Advances in Non-Archimedean Analysis and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-81976-7_3

Download citation

Publish with us

Policies and ethics