Skip to main content

Market Equilibrium Models in Large-Scale Internet Markets

  • Chapter
  • First Online:
Innovative Technology at the Interface of Finance and Operations

Part of the book series: Springer Series in Supply Chain Management ((SSSCM,volume 13))

Abstract

Markets and their corresponding equilibrium concepts have traditionally been used as very powerful building blocks to find allocations and prices. This chapter provides examples of the use of Fisher markets in the technology industry. We focus on Internet advertising auctions, fair division problems, content recommendation systems, and robust abstractions of large-scale markets. After introducing these markets, we describe how these models fit the relevant application domains and what insights they can generate, exhibiting the most important theoretical and computational results from the recent literature on these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this case with continuous distributions, the probability of ties is zero.

  2. 2.

    See also Murray et al. (2020b).

  3. 3.

    Every optimal solution to EG must lie in this set, assuming that every good j has some i such that v ij > 0; if this does not hold then that good can simply be preprocessed away.

References

  • Aleksandrov, M., & Walsh, T. (2020). Online fair division: A survey. Proceedings of the AAAI Conference on Artificial Intelligence, 34(9), 13557–13562.

    Article  Google Scholar 

  • Allouah, A., Avadhanula, V., Kroer, C., Pupyrev, S., Shah, P., & Zhang, X. (2022). Robust and fair work allocation. Mimeo.

    Google Scholar 

  • Azizan, N., Su, Y., Dvijotham, K., & Wierman, A. (2020). Optimal pricing in markets with nonconvex costs. Operations Research, 68(2), 480–496.

    Google Scholar 

  • Balseiro, S. R., & Gur, Y. (2019). Learning in repeated auctions with budgets: Regret minimization and equilibrium. Management Science, 65(9), 3952–3968.

    Article  Google Scholar 

  • Balseiro, S. R., Besbes, O., & Weintraub, G. Y. (2015). Repeated auctions with budgets in ad exchanges: Approximations and design. Management Science, 61(4), 864–884.

    Article  Google Scholar 

  • Balseiro, S. R., Kim, A., Mahdian, M., & Mirrokni, V. (2017). Budget management strategies in repeated auctions. In Proceedings of the 26th International Conference on World Wide Web (WWW’17), pp. 15–23.

    Chapter  Google Scholar 

  • Bastani, H., Zhang, D. J., & Zhang, H. (2021). Applied machine learning in operations management. In V. Birge Babich & J. G. Hilary (Eds.), Innovative technology at the interface of finance and operations. Series in supply chain management. Berlin: Springer.

    Google Scholar 

  • Bei, X., Garg, J., & Hoefer, M. (2019). Ascending-price algorithms for unknown markets. ACM Transactions on Algorithms, 15(3), 1–33.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern convex optimization: Analysis, algorithms, and engineering applications. Philadelphia: SIAM. Retrieved November 2020 from https://www2.isye.gatech.edu/~nemirovs/LMCOLN2020WithSol.pdf

    Book  Google Scholar 

  • Bertsekas, D. P., Nedic, A., & Ozdaglar, A. (2003). Convex analysis and optimization. Nashua: Athena Scientific.

    Google Scholar 

  • Birnbaum, B., Devanur, N. R., & Xiao, L. (2011). Distributed algorithms via gradient descent for Fisher markets. In Proceedings of the ACM Conference on Electronic Commerce (EC’11) (pp. 127–136). New York: ACM.

    Chapter  Google Scholar 

  • Borgs, C., Chayes, J., Immorlica, N., Jain, K., Etesami, O., & Mahdian, M. (2007). Dynamics of bid optimization in online advertisement auctions. In Proceedings of the 16th International Conference on World Wide Web (WWW’07) (pp. 531–540).

    Google Scholar 

  • Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (2016) Handbook of computational social choice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Brown, N., & Sandholm, T. (2018). Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science, 359(6374), 418–424.

    Article  Google Scholar 

  • Brown, N., Ganzfried, S., & Sandholm, T. (2015). Hierarchical abstraction, distributed equilibrium computation, and post-processing, with application to a champion no-limit Texas hold’em agent. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS’15) (pp. 7–15). International Foundation for Autonomous Agents and Multiagent Systems.

    Google Scholar 

  • Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine Learning, 8(3–4), 231–357.

    Article  Google Scholar 

  • Budish, E. (2011). The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. Journal of Political Economy, 119(6), 1061–1103.

    Article  Google Scholar 

  • Budish, E., Cachon, G. P., Kessler, J. B., & Othman, A. (2016). Course match: A large-scale implementation of approximate competitive equilibrium from equal incomes for combinatorial allocation. Operations Research, 65(2):314–336.

    Article  Google Scholar 

  • Budish, E., Che, Y.-K., Kojima, F., & Milgrom, P. (2013). Designing random allocation mechanisms: Theory and applications. American Economic Review, 103(2), 585–623.

    Article  Google Scholar 

  • Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6), 717.

    Article  Google Scholar 

  • Candogan, O., Epitropou, M., & Vohra, R. V. (2016). Competitive equilibrium and trading networks: A network flow approach. In Proceedings of the ACM Conference on Economics and Computation (EC’16) (pp. 701–702).

    Google Scholar 

  • Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & Wang, J. (2019). The unreasonable fairness of maximum Nash welfare. ACM Transactions on Economics and Computation, 7(3), 1–32.

    Article  Google Scholar 

  • Chen, L., Ye, Y., & Zhang, J. (2007). A note on equilibrium pricing as convex optimization. In International Workshop on Web and Internet Economics (WINE’07) (pp. 7–16). Berlin: Springer.

    Google Scholar 

  • Chi, Y., Lu, Y. M., & Chen, Y. (2019). Nonconvex optimization meets low-rank matrix factorization: An overview. IEEE Transactions on Signal Processing, 67(20), 5239–5269.

    Article  Google Scholar 

  • Choi, H., Mela, C. F., Balseiro, S. R., & Leary, A. (2020). Online display advertising markets: A literature review and future directions. Information Systems Research, 31(2):556–575.

    Article  Google Scholar 

  • Cole, R., Devanur, N. R., Gkatzelis, V., Jain, K., Mai, T., Vazirani, V. V., & Yazdanbod, S. (2017). Convex program duality, Fisher markets, and Nash social welfare. In ACM Conference on Economics and Computation (EC’17). New York: Association for Computing Machinery.

    Google Scholar 

  • Conitzer, V., Kroer, C., Sodomka, E., & Stier-Moses, N. E. (2018). Multiplicative pacing equilibria in auction markets. In International Conference on Web and Internet Economics(WINE’18).

    Google Scholar 

  • Conitzer, V., Kroer, C., Panigrahi, D., Schrijvers, O., Sodomka, E., Stier-Moses, N. E., & Wilkens, C. (2019). Pacing equilibrium in first-price auction markets. In Proceedings of the ACM Conference on Economics and Computation (EC’19). New York: ACM.

    Google Scholar 

  • Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the National Academy of Sciences, 38(10), 886–893.

    Article  Google Scholar 

  • Devanur, N.R., Papadimitriou, C.H., Saberi, A., & Vazirani, V. V. (2008). Market equilibrium via a primal–dual algorithm for a convex program. Journal of the ACM, 55(5), 1–18.

    Article  Google Scholar 

  • Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research, 17(83), 1–5.

    Google Scholar 

  • Eisenberg, E. (1961). Aggregation of utility functions. Management Science, 7(4), 337–350.

    Article  Google Scholar 

  • Eisenberg, E., & Gale, D. (1959). Consensus of subjective probabilities: The pari-mutuel method. The Annals of Mathematical Statistics, 30(1), 165–168.

    Article  Google Scholar 

  • Fan, K. (1952). Fixed-point and minimax theorems in locally convex topological linear spaces. Proceedings of the National Academy of Sciences of the United States of America, 38(2), 121.

    Article  Google Scholar 

  • Flajolet, A., & Jaillet,, P. (2017). Real-time bidding with side information. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS’17) (5168–5178). Red Hook: Curran Associates.

    Google Scholar 

  • Freeman, R., & Shah, N. (2020). AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation. Retrieved November 2020 from https://users.cs.duke.edu/~rupert/fair-division-aaai20/Tutorial-Slides.pdf

    Google Scholar 

  • Gao, Y., & Kroer, C. (2020). First-order methods for large-scale market equilibrium computation. In Advances in Neural Information Processing Systems (NeurIPS’20).

    Google Scholar 

  • Ghodsi, M., HajiAghayi, M.-T., Seddighin, M., Seddighin, S., & Yami, H. (2018). Fair allocation of indivisible goods: Improvements and generalizations. In Proceedings of the ACM Conference on Economics and Computation (EC’18) (pp. 539–556).

    Google Scholar 

  • Gilpin, A., Sandholm, T., & Sørensen, T. B. (2007). Potential-aware automated abstraction of sequential games, and holistic equilibrium analysis of Texas hold’em poker. In Proceedings of the 22nd National Conference on Artificial Intelligence (vol. 1, pp. 50–57). Palo Alto: AAAI Press.

    Google Scholar 

  • Glicksberg, I. L. (1952). A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proceedings of the American Mathematical Society, 3(1), 170–174.

    Google Scholar 

  • Goldman, J., & Procaccia, A. D. (2015). Spliddit: Unleashing fair division algorithms. ACM SIGecom Exchanges, 13(2), 41–46.

    Article  Google Scholar 

  • Kroer, C. (2020). IEOR8100: Economics, AI, and optimization lecture note 14: Large-scale fisher market equilibrium.

    Google Scholar 

  • Kroer, C., & Peysakhovich, A. (2019). Scalable fair division for ‘at most one’ preferences. arXiv:1909.10925.

    Google Scholar 

  • Kroer, C., & Sandholm, T. (2014). Extensive-form game abstraction with bounds. In Proceedings of the ACM Conference on Economics and Computation (EC’14) (pp. 621–638). New York: ACM.

    Google Scholar 

  • Kroer, C., & Sandholm, T. (2016). Imperfect-recall abstractions with bounds in games. In Proceedings of the ACM Conference on Economics and Computation (EC’16) (pp. 459–476). New York: ACM.

    Chapter  Google Scholar 

  • Kroer, C., & Sandholm, T. (2018). A unified framework for extensive-form game abstraction with bounds. In Advances in Neural Information Processing Systems (NeurIPS’18) (pp. 612–623).

    Google Scholar 

  • Kroer, C., Peysakhovich, A., Sodomka, E., & Stier-Moses, N. E. (2019). Computing large market equilibria using abstractions. In Proceedings of the ACM Conference on Economics and Computation (EC’19) (pp. 745–746).

    Google Scholar 

  • Lanctot, M., Gibson, R., Burch, N., Zinkevich, M., & Bowling, M. (2012). No-regret learning in extensive-form games with imperfect recall. In Proceedings of the 29th International Coference on Machine Learning (ICML’12) (pp. 1035–1042). Madison: Omnipress.

    Google Scholar 

  • Levin, D., LaCurts, K., Spring, N., & Bhattacharjee, B. (2008). Bittorrent is an auction: Analyzing and improving bittorrent’s incentives. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication (pp. 243–254).

    Google Scholar 

  • Lu, T., & Boutilier, C. (2015). Value-directed compression of large-scale assignment problems. In Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press.

    Google Scholar 

  • McElfresh, D. C., Kroer, C., Pupyrev, S., Sodomka, E., Sankararaman, K. A., Chauvin, Z., Dexter, N., & Dickerson, J. P. (2020). Matching algorithms for blood donation. In Proceedings of the ACM Conference on Economics and Computation (EC’20) (pp. 463–464).

    Google Scholar 

  • Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., & Diaz, F. (2018). Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 2243–2251).

    Google Scholar 

  • Mosek ApS. (2010). The MOSEK optimization software. http://www.mosek.com

    Google Scholar 

  • Murray, R., Kroer, C., Peysakhovich, A., & Shah, P. (2020a). Robust market equilibria with uncertain preferences. In Proceedings of the AAAI Conference on Artificial Intelligence.

    Google Scholar 

  • Murray, R., Kroer, C., Peysakhovich, A., & Shah, P. (2020b). Robust market equilibria: How to model uncertain buyer preferences. Retrieved December 2020, from https://research.fb.com/blog/2020/09/robust-market-equilibria-how-to-model-uncertain-buyer-preferences

    Google Scholar 

  • Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • O’Donoghue, B., Chu, E., Parikh, N., & Boyd, S. (2016). Conic optimization via operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3), 1042–1068.

    Article  Google Scholar 

  • Paes Leme, R., Sivan, B., & Teng, Y. (2020). Why do competitive markets converge to first-price auctions? In Proceedings of The Web Conference 2020, WWW’20 (pp. 596–605). New York: Association for Computing Machinery.

    Chapter  Google Scholar 

  • Parkes, D. C., Procaccia, A. D., & Shah, N. (2015). Beyond dominant resource fairness: Extensions, limitations, and indivisibilities. ACM Transactions on Economics and Computation, 3(1), 1–22.

    Article  Google Scholar 

  • Peng, F., & Sandholm, T. (2016). Scalable segment abstraction method for advertising campaign admission and inventory allocation optimization. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16) (pp. 655–661). Menlo Park: AAAI Press.

    Google Scholar 

  • Procaccia, A. D. (2013). Cake cutting: Not just child’s play. Communications of the ACM, 56(7), 78–87.

    Article  Google Scholar 

  • Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine Learning Research, 12, 3413–3430.

    Google Scholar 

  • Shmyrev, V. I. (2009). An algorithm for finding equilibrium in the linear exchange model with fixed budgets. Journal of Applied and Industrial Mathematics, 3(4), 505.

    Article  Google Scholar 

  • Talluri, K., & Van Ryzin, G. (1998). An analysis of bid-price controls for network revenue management. Management Science, 44, 1577–1593.

    Article  Google Scholar 

  • Udell, M. (2019). Big data is low rank. SIAG/OPT Views and News.

    Google Scholar 

  • Udell, M., Horn, C., Zadeh, R., & Boyd, S. (2016). Generalized low rank models. Foundations and Trends® in Machine Learning, 9(1), 1–118.

    Article  Google Scholar 

  • Varian, H. R. (1974). Equity, envy, and efficiency. Journal of Economic Theory, 9(1), 63–91.

    Article  Google Scholar 

  • Vazirani, V. V. (2010). Spending constraint utilities with applications to the adwords market. Mathematics of Operations Research, 35(2):458–478.

    Article  Google Scholar 

  • Walsh, T. (2020). Fair division: The computer scientist’s perspective. arXiv:2005.04855.

    Google Scholar 

  • Walsh, W. E., Boutilier, C., Sandholm, T., Shields, R., Nemhauser, G., & Parkes, D. C. (2010). Automated channel abstraction for advertising auctions. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (pp. 887–894). Menlo Park: AAAI Press.

    Google Scholar 

  • Wu, F., & Zhang, Li. (2007). Proportional response dynamics leads to market equilibrium. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC’07) (pp. 354–363).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kroer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Editors

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kroer, C., Stier-Moses, N.E. (2022). Market Equilibrium Models in Large-Scale Internet Markets. In: Babich, V., Birge, J.R., Hilary, G. (eds) Innovative Technology at the Interface of Finance and Operations. Springer Series in Supply Chain Management, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-81945-3_7

Download citation

Publish with us

Policies and ethics