Skip to main content

Degree-Degree Correlation in Networks with Preferential Attachment Based Growth

  • Conference paper
  • First Online:
Complex Networks XII (CompleNet-Live 2021)

Abstract

The paper’s main focus is the analysis of degree-degree correlation in complex networks generated following two growth models based on the preferential attachment mechanism: the Barabási-Albert model and the triadic closure model. The average nearest neighbor degree (ANND) value of k-degree nodes, defined as their neighbors’ average degree, is employed to quantify the degree-degree assortativity in the networks. First, we derive the dynamics of the average degree of neighbors for every node. Then we find the distributions of the ANND-values at each iteration in both networks. Results show that both networks are uncorrelated for nodes with high degrees, while for small degrees both networks exhibit degree-degree disassortativity.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the basic part of the scientific research state task, project FSRR-2020-0006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). https://doi.org/10.1103/revmodphys.74.47

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Allen-Perkins, A., Pastor, J.M., Estrada, E.: Two-walks degree assortativity in graphs and networks. Appl. Math. Comput. 311(C), 262–271 (2017). https://doi.org/10.1016/j.amc.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Catanzaro, M., Boguñá, M., Pastor-Satorras, R.: Generation of uncorrelated random scale-free networks. Phys. Rev. E 71 (2005). https://doi.org/10.1103/PhysRevE.71.027103

  5. Farzam, A., Samal, A., Jost, J.: Degree difference: a simple measure to characterize structural heterogeneity in complex networks. Sci. Rep. 10(21348) (2020). https://doi.org/10.1038/s41598-020-78336-9

  6. de Franciscis, S., Johnson, S., Torres, J.J.: Enhancing neural-network performance via assortativity. Phys. Rev. E 83, 036114 (2011). https://doi.org/10.1103/PhysRevE.83.036114

  7. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65(2), 026107 (2002). https://doi.org/10.1103/PhysRevE.65.026107

  8. Lee, D.-S., Chang, C.-S., Zhu, M., Li, H.-C.: A generalized configuration model with degree correlations and its percolation analysis. Appl. Netw. Sci. 4(1), 1–21 (2019). https://doi.org/10.1007/s41109-019-0240-2

    Article  ADS  Google Scholar 

  9. Litvak, N., van der Hofstad, R.: Uncovering disassortativity in large scale-free networks. Phys. Rev. E 87, 022801 (2013). https://doi.org/10.1103/PhysRevE.87.022801

  10. Mack, G.: Universal dynamics, a unified theory of complex systems. Emergence, life and death. Commun. Math. Phys. 219(1), 141–178 (2001). https://doi.org/10.1007/s002200100397

  11. Nandi, G., Das, A.: An efficient link prediction technique in social networks based on node neighborhoods. Int. J. Adv. Comput. Sci. Appl. 9(6), 257–266 (2018). https://doi.org/10.14569/ijacsa.2018.090637

  12. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002). https://doi.org/10.1103/PhysRevLett.89.208701

  13. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003). https://doi.org/10.1103/PhysRevE.67.026126

  14. Noldus, R., Van Mieghem, P.: Assortativity in complex networks. J. Compl. Netw. 3(4), 507–542 (2015). https://doi.org/10.1093/comnet/cnv005

  15. Pelechrinis, K., Wei, D.: VA-index: quantifying assortativity patterns in networks with multidimensional nodal attributes. PLOS ONE 11(1), 1–13 (2016). https://doi.org/10.1371/journal.pone.0146188

  16. Samanta, S., Dubey, V.K., Sarkar, B.: Measure of influences in social networks. Appl. Soft Comput. 99, 106858 (2021). https://doi.org/10.1016/j.asoc.2020.106858

  17. Stolov, Y., Idel, M., Solomon, S.: What are stories made of? - Quantitative categorical deconstruction of creation. Int. J. Mod. Phys. C 11(04), 827–835 (2000). https://doi.org/10.1142/S0129183100000699

    Article  ADS  Google Scholar 

  18. Uribe-Leon, C., Vasquez, J.C., Giraldo, M.A., Ricaurte, G.: Finding optimal assortativity configurations in directed networks. J. Compl. Netw. 8(6) (2021). https://doi.org/10.1093/comnet/cnab004

  19. Yao, D., van der Hoorn, P., Litvak, N.: Average nearest neighbor degrees in scale-free networks. Internet Math. 2018, 1–38 (2018). https://doi.org/10.24166/im.02.2018

  20. Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86, 066103 (2012). https://doi.org/10.1103/PhysRevE.86.066103

  21. Zhuang-Xiong, H., Xin-Ran, W., Han, Z.: Pair correlations in scale-free networks. Chin. Phys. 13(3), 273–278 (2004). https://doi.org/10.1088/1009-1963/13/3/001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Sidorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mironov, S., Sidorov, S., Malinskii, I. (2021). Degree-Degree Correlation in Networks with Preferential Attachment Based Growth. In: Teixeira, A.S., Pacheco, D., Oliveira, M., Barbosa, H., Gonçalves, B., Menezes, R. (eds) Complex Networks XII. CompleNet-Live 2021. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-81854-8_5

Download citation

Publish with us

Policies and ethics