Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Rahilly R, Muller F. Developmental stages in human embryos. Washington, DC: Carnegie Institution of Washington; 1987.

    Google Scholar 

  2. Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995;121:333–46.

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka M. Developmental mechanism of limb field specification along the anterior-posterior axis during vertebrate evolution. J Dev Biol. 2016;4:15.

    Article  Google Scholar 

  4. Nishimoto S, Minguillon C, Wood S, Logan MP. A combination of activation and repression by a colinear Hox code controls forelimb-restricted expression of Tbx5 and reveals Hox protein specificity. PLoS Genet. 2014;10:e1004245.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Rahilly R. Human-embryo. Nature. 1987;329:385.

    Article  PubMed  Google Scholar 

  6. Xu B, Wellik DM. Axial Hox9 activity establishes the posterior field in the developing forelimb. ProcNatlAcad Sci USA. 2011;108:4888–91.

    Article  CAS  Google Scholar 

  7. Rancourt DE, Tsuzuki T, Capecchi MR. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev. 1995;9:108–22.

    Article  CAS  PubMed  Google Scholar 

  8. Hasson P, Del Buono J, Logan MP. Tbx5 is dispensable for forelimb outgrowth. Development. 2007;134:85–92.

    Article  CAS  PubMed  Google Scholar 

  9. Minguillon C, Del Buono J, Logan MP. Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth. Dev Cell. 2005;8:75–84.

    Article  CAS  PubMed  Google Scholar 

  10. Rallis C, et al. Tbx5 is required for forelimb bud formation and continued outgrowth. Development. 2003;130:2741–51.

    Article  CAS  PubMed  Google Scholar 

  11. Takeuchi JK, Koshiba-Takeuchi K, Suzuki T, Kamimura M, Ogura K, Ogura T. Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development. 2003;130:2729–39.

    Article  CAS  PubMed  Google Scholar 

  12. Chevallier A. Origin of scapular and pelvic girdles of bird embryo. J Embryol Exp Morphol. 1977;42:275–92.

    Google Scholar 

  13. Huang RJ, Zhi QX, Patel K, Wilting J, Christ B. Dual origin and segmental organisation of the avian scapula. Development. 2000;127:3789–94.

    Article  CAS  PubMed  Google Scholar 

  14. Durland JL, Sferlazzo M, Logan M, Burke AC. Visualizing the lateral somitic frontier in the Prx1Cre transgenic mouse. J Anat. 2008;212:590–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valasek P, et al. Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. J Anat. 2010;216:482–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Matsuoka T, et al. Neural crest origins of the neck and shoulder. Nature. 2005;436:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heude E, et al. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. elife. 2018;7

    Google Scholar 

  18. Sears KE, Capellini TD, Diogo R. On the serial homology of the pectoral and pelvic girdles of tetrapods. Evolution. 2015;69:2543–55.

    Article  PubMed  Google Scholar 

  19. Tanaka S, et al. Shoulder girdle formation and positioning during embryonic and early fetal human development. PLoS One. 2020;15:e0238225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller F, Orahilly R. Somitic-vertebral correlation and vertebral levels in the human-embryo. Am J Anatomy. 1986;177:3–19.

    Article  CAS  Google Scholar 

  21. Cunningham C, Scheuer L, Black S. In: Cunningham C, Scheuer L, Black S, editors. Chapter 9—The pectoral girdle. In developmental juvenile osteology. 2nd ed. San Diego: Academic Press; 2016. p. 253–82.

    Chapter  Google Scholar 

  22. Anwar I, Amiras D, Khanna M, Walker M. Physes around the shoulder girdle: normal development and injury patterns. Clin Radiol. 2016;71:702–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zember J, Vega P, Rossi I, Rosenberg ZS. Normal development imaging pitfalls and injuries in the pediatric shoulder. Pediatr Radiol. 2019;49:1617–28.

    Article  PubMed  Google Scholar 

  24. Lenover MB, Šešelj M. Variation in the fusion sequence of primary and secondary ossification centers in the human skeleton. Am J Phys Anthropol. 2019;170:373–92.

    Article  PubMed  Google Scholar 

  25. Fujii K, Takeda Y, Miyatake K. Development of secondary ossification centres of the acromion in Japanese youth: a computed tomographic study. J Orthop Surg (Hong Kong). 2015;23:229–32.

    Article  Google Scholar 

  26. Zember JS, Rosenberg ZS, Kwong S, Kothary SP, Bedoya MA. Normal skeletal maturation and imaging pitfalls in the pediatric shoulder. Radiographics. 2015;35:1108–22.

    Article  PubMed  Google Scholar 

  27. Nagashima H, Sugahara F, Watanabe K, Shibata M, Chiba A, Sato N. Developmental origin of the clavicle, and its implications for the evolution of the neck and the paired appendages in vertebrates. J Anat. 2016;229:536–48.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lloyd-Roberts GC, Apley AG, Owen R. Reflections upon the aetiology of congenital pseudarthrosis of the clavicle. With a note on cranio-cleido dysostosis. J Bone Joint Surg Br. 1975;57:24–9.

    Article  CAS  PubMed  Google Scholar 

  29. Schaefer M, Aben G, Vogelsberg C. A demonstration of appearance and union times of three shoulder ossification centers in adolescent and post-adolescent children. J Forensic Radiol Imaging. 2015;3:49–56.

    Article  Google Scholar 

  30. Shedge R, et al. Computed tomographic analysis of medial clavicular epiphyseal fusion for age estimation in Indian population. Leg Med (Tokyo). 2020;46:101735.

    Article  Google Scholar 

  31. Hita-Contreras F, Sanchez-Montesinos I, Martinez-Amat A, Cruz-Diaz D, Barranco RJ, Roda O. Development of the human shoulder joint during the embryonic and early fetal stages: anatomical considerations for clinical practice. J Anat. 2018;232:422–30.

    Article  PubMed  Google Scholar 

  32. Capellini TD, et al. Scapula development is governed by genetic interactions of Pbx1 with its family members and with Emx2 via their cooperative control of Alx1. Development. 2010;137:2559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Timmons PM, Wallin J, Rigby PWJ, Balling R. Expression and function of Pax-1 during development of the pectoral girdle. Development. 1994;120:2773–85.

    Article  CAS  PubMed  Google Scholar 

  34. Kuijper S, et al. Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development. 2005;132:1601–10.

    Article  CAS  PubMed  Google Scholar 

  35. Singh MK, Petry M, Haenig B, Lescher B, Leitges M, Kispert A. The T-box transcription factor Tbx15 is required for skeletal development. Mech Dev. 2005;122:131–44.

    Article  CAS  PubMed  Google Scholar 

  36. Krawchuk D, et al. Twist1 activity thresholds define multiple functions in limb development. Dev Biol. 2010;347:133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loebel DA, et al. Regionalized Twist1 activity in the forelimb bud drives the morphogenesis of the proximal and preaxial skeleton. Dev Biol. 2012;362:132–40.

    Article  CAS  PubMed  Google Scholar 

  38. Young M, Selleri L, Capellini TD. Genetics of scapula and pelvis development: an evolutionary perspective. Curr Top Dev Biol. 2019;132:311–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khor JM, Ettensohn CA. Transcription factors of the Alx family: evolutionarily conserved regulators of deuterostome Skeletogenesis. Front Genet. 2020;11:1405.

    Article  Google Scholar 

  40. Selleri L, et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development. 2001;128:3543–57.

    Article  CAS  PubMed  Google Scholar 

  41. Diogo R. Cranial or postcranial-dual origin of the pectoral appendage of vertebrates combining the fin-fold and gill-arch theories? Dev Dyn. 2020;249:1182–200.

    Article  PubMed  Google Scholar 

  42. Murillo-Gonzalez J, De La Cuadra-Blanco C, Arraez-Aybar LA, Herrera-Lara ME, Minuesa-Asensio A, Merida-Velasco JR. Development of the long head of the biceps brachial tendon: a possible explanation of the anatomical variations. Ann Anat. 2018;218:243–9.

    Article  PubMed  Google Scholar 

  43. Pineault KM, Wellik DM. Hox genes and limb musculoskeletal development. Curr Osteoporos Rep. 2014;

    Google Scholar 

  44. Besse L, et al. Individual limb muscle bundles are formed through progressive steps orchestrated by adjacent connective tissue cells during primary myogenesis. Cell Rep. 2020;30:3552–3565.e3556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pu Q, Huang R, Brand-Saberi B. Development of the shoulder girdle musculature. Dev Dyn. 2016;245:342–50.

    Article  CAS  PubMed  Google Scholar 

  46. Kelly RG, Jerome-Majewska LA, Papaioannou VE. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum Mol Genet. 2004;13:2829–40.

    Article  CAS  PubMed  Google Scholar 

  47. Theis S, et al. The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development. 2010;137:2961–71.

    Article  CAS  PubMed  Google Scholar 

  48. Adachi N, Bilio M, Baldini A, Kelly RG. Cardiopharyngeal mesoderm origins of musculoskeletal and connective tissues in the mammalian pharynx. Development. 2020;147

    Google Scholar 

  49. Brand-Saberi B, Muller TS, Wilting J, Christ B, Birchmeier C. Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol. 1996;179:303–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dietrich S, et al. The role of SF/HGF and c-met in the development of skeletal muscle. Development. 1999;126:1621–9.

    Article  CAS  PubMed  Google Scholar 

  51. Masyuk M, et al. Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem Cell Biol. 2014;142:473–88.

    Article  CAS  PubMed  Google Scholar 

  52. Valasek P, et al. Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol. 2011;357:108–16.

    Article  CAS  PubMed  Google Scholar 

  53. Tigga SR, Goswami P, Khanna J. Congenital partial absence of trapezius with variant pattern of rectus sheath. Acta Med Iran. 2016;54:280–2.

    PubMed  Google Scholar 

  54. Gross-Kieselstein E, Shalev RS. Familial absence of the trapezius muscle with associated shoulder girdle abnormalities. Clin Genet. 1987;32:145–7.

    Article  CAS  PubMed  Google Scholar 

  55. Yiyit N, Işıtmangil T, Oztürker C. The abnormalities of trapezius muscle might be a component of Poland’s syndrome. Med Hypotheses. 2014;83:533–6.

    Article  PubMed  Google Scholar 

  56. Vajramani A, Witham FM, Richards RH. Congenital unilateral absence of sternocleidomastoid and trapezius muscles: a case report and literature review. J Pediatr Orthop B. 2010;19:462–4.

    Article  PubMed  Google Scholar 

  57. Goldfarb CA, Wall LB, Ezaki M, Oberg KC. Oberg-Manske-Tonkin (OMT) classification of congenital upper extremities: update for 2020. J Hand Surg [Am]. 2020;45(6):542–7.

    Article  Google Scholar 

  58. Hill MA. Embryology kyoto collection, vol. 2021; 2021.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Charmaine Pira for critically reviewing the manuscript and offering suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerby C. Oberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damoah, RL., Oberg, K.C. (2022). Development of the Shoulder Girdle. In: Farr, S. (eds) Congenital and Acquired Deformities of the Pediatric Shoulder Girdle. Springer, Cham. https://doi.org/10.1007/978-3-030-81839-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81839-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81838-8

  • Online ISBN: 978-3-030-81839-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics