Skip to main content

Laser-Induced Graphene and Its Applications in Soft (Bio)Sensors

  • Chapter
  • First Online:
Nanoporous Carbons for Soft and Flexible Energy Devices

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 11))

Abstract

In recent years the technological importance of graphene increased significantly also in the field of soft, flexible and wearable electronics. In this chapter a simple one step process to create 3D porous graphene structures into flexible polymer films is highlighted. By laser scribing polymer precursor substrates with commercially available laser scribing setups the polymer is converted into so-called Laser-Induced Graphene (LIG) via a photothermal conversion. The properties of this material and the influence of different processing parameters on its composition and structure are introduced. Different transfer methods for stretchable applications are discussed. Three main application fields of LIG for soft (bio)sensors are identified: piezoresistive, electrophysiological and electrochemical sensors. Each of the application fields is highlighted more in detail and an overview of recent publications is given. Concluding with an outlook on the future of LIG – including improvement of patterning resolution and the use of renewable, bio-derived precursors – this chapter provides a broad overview of LIG for soft and flexible sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inagaki, M.: New Carbons Control of Structure and Functions. Elsevier Science, Amsterdam/New York (2000)

    Google Scholar 

  2. Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E.L.G., Yacaman, M.J., Yakobson, B.I., Tour, J.M.: Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014)

    Article  CAS  Google Scholar 

  3. Huang, L., Su, J., Song, Y., Ye, R.: Laser-induced graphene: En route to smart sensing. Nano-Micro Lett. 12, 157 (2020)

    Article  CAS  Google Scholar 

  4. Wan, Z., Nguyen, N.-T., Gao, Y., Li, Q.: Laser induced graphene for biosensors. Sustainable Mater. Technol. 25, e00205 (2020)

    Article  CAS  Google Scholar 

  5. Peng, Z., Lin, J., Ye, R., Samuel, E.L.G., Tour, J.M.: Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces 7, 3414–3419 (2015)

    Article  CAS  Google Scholar 

  6. Lamberti, A., Clerici, F., Fontana, M., Scaltrito, L.: A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6, 1600050 (2016)

    Article  Google Scholar 

  7. Song, W., Zhu, J., Gan, B., Zhao, S., Wang, H., Li, C., Wang, J.: Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene. Small 14, 1702249 (2018)

    Article  Google Scholar 

  8. Tehrani, F., Beltrán-Gastélum, M., Sheth, K., Karajic, A., Yin, L., Kumar, R., Soto, F., Kim, J., Wang, J., Barton, S., Mueller, M., Wang, J.: Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technologies 4, 1900162 (2019)

    Article  CAS  Google Scholar 

  9. Tao, L.-Q., Tian, H., Liu, Y., Ju, Z.-Y., Pang, Y., Chen, Y.-Q., Wang, D.-Y., Tian, X.-G., Yan, J.-C., Deng, N.-Q., Yang, Y., Ren, T.-L.: An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8, 14579 (2017)

    Article  CAS  Google Scholar 

  10. Zhang, P., Tang, X., Pang, Y., Bi, M., Li, X., Yu, J., Zhang, J., Yuan, M., Luo, F.: Flexible laser-induced-graphene omnidirectional sound device. Chem. Phys. Lett. 745, 137275 (2020)

    Article  CAS  Google Scholar 

  11. Carvalho, A.F., Fernandes, A.J.S., Leitão, C., Deuermeier, J., Marques, A.C., Martins, R., Fortunato, E., Costa, F.M.: Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 28, 1805271 (2018)

    Article  Google Scholar 

  12. Chhetry, A., Sharifuzzaman, M., Yoon, H., Sharma, S., Xuan, X., Park, J.Y.: MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 11, 22531–22542 (2019)

    Article  CAS  Google Scholar 

  13. Liu, W., Huang, Y., Peng, Y., Walczak, M., Wang, D., Chen, Q., Liu, Z., Li, L.: Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl. Nano Mater. 3, 283–293 (2020)

    Article  CAS  Google Scholar 

  14. Dallinger, A., Keller, K., Fitzek, H., Greco, F.: Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 12, 19855–19865 (2020)

    Article  CAS  Google Scholar 

  15. Rahimi, R., Ochoa, M., Yu, W., Ziaie, B.: Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 7, 4463–4470 (2015)

    Article  CAS  Google Scholar 

  16. Wu, Y., Karakurt, I., Beker, L., Kubota, Y., Xu, R., Ho, K.Y., Zhao, S., Zhong, J., Zhang, M., Wang, X., Lin, L.: Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sens. Actuators A 279, 46–52 (2018)

    Article  CAS  Google Scholar 

  17. Stanford, M.G., Yang, K., Chyan, Y., Kittrell, C., Tour, J.M.: Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13, 3474–3482 (2019)

    Article  CAS  Google Scholar 

  18. Yang, L., Yi, N., Zhu, J., Cheng, Z., Yin, X., Zhang, X., Zhu, H., Cheng, H.: Novel gas sensing platform based on a tretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 8, 6487–6500 (2020)

    Article  CAS  Google Scholar 

  19. Sun, B., McCay, R.N., Goswami, S., Xu, Y., Zhang, C., Ling, Y., Lin, J., Yan, Z.: Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30, 1804327 (2018)

    Article  Google Scholar 

  20. Zahed, M.A., Das, P.S., Maharjan, P., Barman, S.C., Sharifuzzaman, M., Yoon, S.H., Park, J.Y.: Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system. Carbon 165, 26–36 (2020)

    Article  Google Scholar 

  21. Xuan, X., Kim, J.Y., Hui, X., Das, P.S., Yoon, H.S., Park, J.-Y.: A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 120, 160–167 (2018)

    Article  CAS  Google Scholar 

  22. Zahed, M.A., Chandra Barman, S., Das, P.S., Sharifuzzaman, M., Yoon, H.S., Yoon, S.H., Park, J.Y.: Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Biosens. Bioelectron. 160, 112220 (2020)

    Article  CAS  Google Scholar 

  23. Yoon, H., Nah, J., Kim, H., Ko, S., Sharifuzzaman, M., Barman, S.C., Xuan, X., Kim, J., Park, J.Y.: A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B 311, 127866 (2020)

    Article  CAS  Google Scholar 

  24. Li, H., Guo, C., Liu, C., Ge, L., Li, F.: Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 145, 4041–4049 (2020)

    Article  CAS  Google Scholar 

  25. Zhu, J., Cho, M., Li, Y., Cho, I., Suh, J.-H., Orbe, D.D., Jeong, Y., Ren, T.-L., Park, I.: Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interfaces 11, 24386–24394 (2019)

    Article  CAS  Google Scholar 

  26. Dosi, M., Lau, I., Zhuang, Y., Simakov, D.S.A., Fowler, M.W., Pope, M.A.: Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene. ACS Appl. Mater. Interfaces 11, 6166–6173 (2019)

    Article  CAS  Google Scholar 

  27. Soares, R.R.A., Hjort, R.G., Pola, C.C., Parate, K., Reis, E.L., Soares, N.F.F., McLamore, E.S., Claussen, J.C., Gomes, C.L.: Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella Enterica in chicken broth. ACS Sensors 5, 1900–1911 (2020)

    Article  CAS  Google Scholar 

  28. Cardoso, A.R., Marques, A.C., Santos, L., Carvalho, A.F., Costa, F.M., Martins, R., Sales, M.G.F., Fortunato, E.: Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 124–125, 167–175 (2019)

    Article  Google Scholar 

  29. Yagati, A.K., Behrent, A., Beck, S., Rink, S., Goepferich, A.M., Min, J.,Lee, M.-H., Baeumner, A.J.: Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive Aptamer-based biosensors. Biosens. Bioelectron. 164, 112272 (2020)

    Article  CAS  Google Scholar 

  30. Zhang, C., Ping, J., Ying, Y.: Evaluation of trans-resveratrol level in grape wine using laser-induced porous graphene-based electrochemical sensor. Sci. Total Environ. 714, 136687 (2020)

    Article  CAS  Google Scholar 

  31. Wan, Z., Umer, M., Lobino, M., Thiel, D., Nguyen, N.-T., Trinchi, A., Shiddiky, M.J., Gao, Y., Li, Q.: Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 163, 385–394 (2020)

    Article  CAS  Google Scholar 

  32. Duy, L.X., Peng, Z., Li, Y., Zhang, J., Ji, Y., Tour, J.M.: Laser-induced graphene fibers. Carbon 126, 472–479 (2018)

    Article  CAS  Google Scholar 

  33. Zhai, Q., Cheng, W.: Soft and stretchable electrochemical biosensors. Mater. Today Nano 7, 100041 (2019)

    Article  Google Scholar 

  34. Zhang, Z., Song, M., Hao, J., Wu, K., Li, C., Hu, C.: Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018)

    Article  CAS  Google Scholar 

  35. Stanford, M.G., Zhang, C., Fowlkes, J.D., Hoffman, A., Ivanov, I.N., Rack, P.D., Tour, J.M.: High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl. Mater. Interfaces 12, 10902–10907 (2020)

    Article  CAS  Google Scholar 

  36. Dong, Y., Rismiller, S.C., Lin, J.: Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 104, 47–55 (2016)

    Article  CAS  Google Scholar 

  37. Lamberti, A., Serrapede, M., Ferraro, G., Fontana, M., Perrucci, F., Bianco, S., Chiolerio, A., Bocchini, S.: All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 4, 035012 (2017)

    Google Scholar 

  38. Zhu, C., Zhao, D., Wang, K., Dong, X., Duan, W., Wang, F., Gao, M., Zhang, G.: Direct laser writing of graphene films from a polyether ether ketone precursor. J. Mater. Sci. 54, 4192–4201 (2019)

    Article  CAS  Google Scholar 

  39. Yang, W., Zhao, W., Li, Q., Li, H., Wang, Y., Li, Y., Wang, G., Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces 12, 3928–3935 (2020)

    Article  CAS  Google Scholar 

  40. Vashisth, A., Kowalik, M., Gerringer, J., Ashraf, C., van Duin, A.C., Green, M.J.: ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites, ACS Appl. Nano Mater. 3, 1881–1890 (2020)

    Article  CAS  Google Scholar 

  41. Chen, Y., Long, J., Zhou, S., Shi, D., Huang, Y., Chen, X., Gao, J., Zhao, N., Wong, C.-P.: UV laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Methods 3, 1900208 (2019)

    Article  CAS  Google Scholar 

  42. Wang, F., Wang, K., Zheng, B., Dong, X., Mei, X., Lv, J., Duan, W., Wang, W.: Laser-induced graphene: preparation, functionalization and applications. Mater. Technol. 33, 340–356 (2018)

    Article  CAS  Google Scholar 

  43. Ye, R., Chyan, Y., Zhang, J., Li, Y., Han, X., Kittrell, C., Tour, J.M.: Laser-induced graphene formation on wood. Adv. Mater. 29, 1702211 (2017)

    Article  Google Scholar 

  44. Han, X., Ye, R., Chyan, Y., Wang, T., Zhang, C., Shi, L., Zhang, T., Zhao, Y., Tour, J.M.: Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl. Nano Mater. 1, 5053–5061 (2018)

    Article  CAS  Google Scholar 

  45. Chyan, Y., Ye, R., Li, Y., Singh, S.P., Arnusch, C.J., Tour, J.M.: Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018)

    Article  CAS  Google Scholar 

  46. Zhang, W., Lei, Y., Ming, F., Jiang, Q., Costa, P.M.F.J., Alshareef, H.N.: Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors. Adv. Energy Mater. 8, 1801840 (2018)

    Article  Google Scholar 

  47. Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)

    Article  Google Scholar 

  48. Nasser, J., Lin, J., Zhang, L., Sodano, H.A.: Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon 162, 570–578 (2020)

    Article  CAS  Google Scholar 

  49. Wu, W., Liang, R., Lu, L., Wang, W., Ran, X., Yue, D.: Preparation of superhydrophobic laser-induced graphene using Taro leaf structure as templates. Surf. Coat. Technol. 393, 125744 (2020)

    Article  CAS  Google Scholar 

  50. Li, Y., Luong, D.X., Zhang, J., Tarkunde, Y.R., Kittrell, C., Sargunaraj, F., Ji, Y., Arnusch, C.J., Tour, J.M.: Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 29, 1700496 (2017)

    Article  Google Scholar 

  51. Li, J.T., Stanford, M.G., Chen, W., Presutti, S.E., Tour, J.M.: Laminated laser-induced graphene composites. ACS Nano 14, 7911–7919 (2020)

    Article  CAS  Google Scholar 

  52. Luong, D.X., Yang, K., Yoon, J., Singh, S.P., Wang, T., Arnusch, C.J., Tour, J.M.: Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13, 2579–2586 (2019)

    CAS  Google Scholar 

  53. Parmeggiani, M., Zaccagnini, P., Stassi, S., Fontana, M., Bianco, S., Nicosia, C., Pirri, C.F., Lamberti, A.: PDMS/polyimide composite as elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl. Mater. Interfaces 11, 33221–33230 (2019)

    Article  CAS  Google Scholar 

  54. Ye, R., James, D.K., Tour, J.M.: Laser-induced graphene. Acc. Chem. Res. 51, 1609–1620 (2018)

    Article  CAS  Google Scholar 

  55. Tian, Q., Yan, W., Li, Y., Ho, D.: Bean pod-inspired ultra-sensitive and self-healing pressure sensor based on laser induced graphene and polystyrene microspheres sandwiched structure. ACS Appl. Mater. Interfaces 12, 9710–9717 (2020)

    Article  CAS  Google Scholar 

  56. Searle, A., Kirkup, L.: A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21, 271–283 (2000)

    Article  CAS  Google Scholar 

  57. Miyamoto, A., Lee, S., Cooray, N.F., Lee, S., Mori, M., Matsuhisa, N., Jin, H., Yoda, L., Yokota, T., Itoh, A., Sekino, M., Kawasaki, H., Ebihara, T., Amagai, M., Someya, T.: Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017)

    Article  CAS  Google Scholar 

  58. Ferrari, L.M., Sudha, S., Tarantino, S., Esposti, R., Bolzoni, F., Cavallari, P., Cipriani, C., Mattoli, V., Greco, F.: Ultraconformable temporary tattoo electrodes for electrophysiology. Adv. Sci. 5, 1700771 (2018)

    Article  Google Scholar 

  59. Zucca, A., Cipriani, C., Sudha, Tarantino, S., Ricci, D., Mattoli, V., Greco, F.: Tattoo conductive polymer nanosheets for skin-contact applications. Adv. Healthc. Mater. 4, 983–990 (2015)

    Google Scholar 

  60. Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Ricci, F., Volpe, G.: Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 79, 114–126 (2016). Past, Present, Future Challenges of Biosensors and Bioanalytical Tools in Anal. Chem.: A Tribute to Prof Marco Mascini

    Google Scholar 

  61. Ge, L., Hong, Q., Li, H., Liu, C., Li, F.: Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 29, 1904000 (2019)

    Article  Google Scholar 

  62. Zhu, Z., Garcia-Gancedo, L., Flewitt, A.J., Xie, H., Moussy, F., Milne, W.I.: A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12, 5996–6022 (2012)

    Article  Google Scholar 

  63. Ge, L., Hong, Q., Li, H., Li, F.: A laser-induced TiO 2-decorated graphene photoelectrode for sensitive photoelectrochemical biosensing. Chem. Commun. 55, 4945–4948 (2019)

    Article  CAS  Google Scholar 

  64. Samouco, A., Marques, A.C., Pimentel, A., Martins, R., Fortunato, E.: Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flex. Print. Electron. 3, 044002 (2018)

    Article  CAS  Google Scholar 

  65. Mahmood, F., Zhang, C., Xie, Y., Stalla, D., Lin, J., Wan, C.: Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors. RSC Adv. 9, 22713–22720 (2019)

    Article  CAS  Google Scholar 

  66. Mahmood, F., Zhang, H., Lin, J., Wan, C.: Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 5, 14611–14618 (2020)

    Article  CAS  Google Scholar 

  67. Lei, Y., Alshareef, A.H., Zhao, W., Inal, S.: Laser-scribed graphene electrodes derived from lignin for biochemical sensing. ACS Appl. Nano Mater. 3, 1166–1174 (2019)

    Article  Google Scholar 

  68. Edberg, J., Brooke, R., Hosseinaei, O., Fall, A., Wijeratne, K., Sandberg, M.: Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics. npj Flex. Electron. 4, 1–10 (2020)

    Google Scholar 

  69. Peng, Z., Ye, R., Mann, J.A., Zakhidov, D., Li, Y., Smalley, P.R., Lin, J., Tour, J.M.: Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9, 5868–5875 (2015)

    Article  CAS  Google Scholar 

  70. Li, L., Zhang, J., Peng, Z., Li, Y., Gao, C., Ji, Y., Ye, R., Kim, n.d., Zhong, Q., Yang, Y., Fei, H., Ruan, G., Tour, J.M.: High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28, 838–845 (2016)

    Google Scholar 

  71. Li, X., Cai, W., Teh, K.S., Qi, M., Zang, X., Ding, X., Cui, Y., Xie, Y., Wu, Y., Ma, H., Zhou, Z., Huang, Q.-A., Ye, J., Lin, L.: High-voltage flexible microsupercapacitors based on laser-induced graphene. ACS Appl. Mater. Interfaces 10, 26357–26364 (2018)

    Article  CAS  Google Scholar 

  72. d’Amora, M., Lamberti, A., Fontana, M., Giordani, S.: Toxicity assessment of laser-induced graphene by zebrafish during development. J. Phys.: Mater. 3, 034008 (2020)

    Google Scholar 

  73. Cheng, H., Vepachedu, V.: Recent development of transient electronics. Theor. Appl. Mech. Lett. 6, 21–31 (2016)

    Article  Google Scholar 

  74. Wu, Y., Ye, D., Shan, Y., He, S., Su, Z., Liang, J., Zheng, J., Yang, Z., Yang, H., Xu, W., Jiang, H.: Edible and nutritive electronics: materials, fabrications, components, and applications. Adv. Mater. Technol. 5, 2000100 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dallinger, A., Keller, K., Greco, F. (2022). Laser-Induced Graphene and Its Applications in Soft (Bio)Sensors. In: Borghi, F., Soavi, F., Milani, P. (eds) Nanoporous Carbons for Soft and Flexible Energy Devices. Carbon Materials: Chemistry and Physics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-81827-2_6

Download citation

Publish with us

Policies and ethics