Skip to main content

Biomechanics of Bone Grafts and Bone Substitutes

  • Chapter
  • First Online:
Orthopaedic Biomechanics in Sports Medicine
  • 1758 Accesses

Abstract

Several comprehensive reviews have been published on bone graft substitutes. The focus here is to catalog the attributes of these materials in a context that may help guide the surgeon’s selection of the bone graft substitutes for particular clinical applications. Achieving the best possible clinical outcome while satisfying the patient’s expectations of return to functionality should be the principal determinants in choosing which of the myriad of bone graft substitutes is the best option for any clinical application. It is known that the structural requirements should be considered in the choice of the appropriate bone graft. Most bone grafts and bone substitutes initially provide very little clinically relevant structural stability and ultimately rely on biology to restore structural stability and function. The objective in this paper is to provide some of the information that will be useful for the clinician in making that decision. In the current review particular emphasis will be placed on the mechanical properties along with material and biological properties of the bone graft with respect to short versus long-term outcomes and patient satisfaction. The factors for the selection of the optimal bone graft involve biomechanical, biomaterial, biological, and clinical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oryan A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:18.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:115–24.

    Article  Google Scholar 

  3. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials. 2017;2:224–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pelker RR, Friedlaender GE. Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am. 1987;18(2):235–9.

    Article  CAS  PubMed  Google Scholar 

  5. Egol, K.A., et al. Bone grafting: sourcing, timing, strategies, and alternatives. J Orthop Trauma. 2015;29(12).

    Google Scholar 

  6. Haugen HJ, et al. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019;46(Suppl. 21):92–102.

    Article  PubMed  Google Scholar 

  7. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials Res. 2019;23:9.

    Article  Google Scholar 

  8. Campana V, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25:2445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brett E, et al. Biomimetics of bone implants: the regenerative road. BioResearch Open Access. 2017;6(1):1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Bioemcahnics and mechanobiology of trabecular bone: a review. J Biomech Eng. 2015;137:12–5.

    Article  Google Scholar 

  11. Hannink G, Arts JJC. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury Int J Care Injured. 2011;42:S22–5.

    Article  Google Scholar 

  12. An YH. Mechanical properties of bone. In: An YH, Draughn RA, editors. Mechanical testing of bone and the bone-implant interface. Boca Raton: CRC Press; 2000. p. 41–64.

    Google Scholar 

  13. D'Souza M, et al. Graft material and biologics for spinal interbody fusion. Biomedicine. 2019;7(75):12.

    Google Scholar 

  14. Fillingham Y, Jacobs J. 2016. Bone grafts and their substitutes. Bone joint J. 98B (1 Suppl a): 6-9.

    Google Scholar 

  15. Xu, Z.J., et al. 2011. Mechanical properties of 7-10mm bone grafts and small slurry grafts in impaction bone grafting. J. Orthop. Res., pp. 1491-1495.

    Google Scholar 

  16. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62:152–61.

    Article  PubMed  Google Scholar 

  17. Roffi A, et al. Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review. BMC Musculoskelet Disord. 2013;14:330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gupta A, et al. Bone graft substitutes for spine fusion: a brief review. World J Orthop. 2015;6(6):449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gianakos AL, et al. Clinical application of concentrated bone marrow aspirate in orthopaedics: a systemic review. World J Orthop. 2017;8(6):491–506.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hernigou P, et al. Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. Int Orthop. 2015;39:1639–43.

    Article  PubMed  Google Scholar 

  21. Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral Transplanation and bone marrow aspirate concentrate: surgical technique. Cartilage. 2011;2(4):327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chala J, et al. Bone marrow aspirate concnetrate for the treatment of osteochondral lesions of the talus: a systematic review of outcomes. J Exp Orthop. 2016;3:33.

    Article  Google Scholar 

  23. DiMatteo B, et al. Adipose-derived stem cell treatments and formulations. Clin Sports Med. 2019;38(1):61–78.

    Article  Google Scholar 

  24. Goldberg VM, Akhavan S. Biology of bone grafts. Beone regeneration and repair. Totowa, NJ: Springer; 2005. p. 57–65.

    Book  Google Scholar 

  25. Mroz TE, et al. Musculoskeletal allograft risks and recalls in the United States. J Am Acad Orthop Surg. 2008;16(10):559–65.

    Article  PubMed  Google Scholar 

  26. Lomas R, Chandrasekar A, Board TN. Bone allograft in the U.K.: perceptions and realities. Hip Int. 2013;23(5):427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kawaguchi S, Hart RA. The need for structural allograft biomechanical guidelines. J Amer Academy Orthop Surg. 2015;23(2):119–25.

    Article  Google Scholar 

  28. Mobbs RJ, Chung M, Rao PJ. Bone graft substitutes for anterior lumbar fusion. Orthop Surg. 2013;5(2):77–85.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blank AT, et al. Bone grafts, substitutes, and augments in benign orthopaedic conditions - current concepts. Bull Hosp Joint Dis. 2017;75(2):119–27.

    Google Scholar 

  30. Pierannunzii L, Zagra L. Bone grafts, bone graft extenders, substitutes and enahncers for acetabular reconstruction in revision total hip arthoplasty. EFORT Open Reviews. 2016;1:431–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lash NJ, et al. Bone grafts and bone substitutes for opening-wedge osteotomies of the knee: a systematic review. J of Arthroscopic Related Surgery. 2015;31(4):720–30.

    Article  Google Scholar 

  32. Wee J, Thevendran G. The role of orthobiologics in foot and ankle surgery: allogenic bone grafts and bone graft substitutes. EFORT Open Reviews. 2017;2

    Google Scholar 

  33. Stark JR, Hsieh J, Waller D. Bone graft substitutes in single- or double-level anterior Cerivical discectomy and fusion. Spine. 2018;44(10):E618–28.

    Article  Google Scholar 

  34. Werner BC, et al. Revision anterior cruciate ligament reconstruction: results of a single-stage approach using allograft dowel bone grafting for femoral defects. J Am Acad Orthop Surg. 2016;24(8):581–7.

    Article  PubMed  Google Scholar 

  35. Theodorides AA, Wall OR. Two-stage revision anterior cruciate ligament reconstruction: our experience using allograft bone dowels. J Orthop Surg (Hong Kong). 2019;27(2):1–9.

    Article  Google Scholar 

  36. Calcei JG, Rodeo SA. Orthobiologics for bone healing. Clin Sports Med. 2019;38:79–95.

    Article  PubMed  Google Scholar 

  37. Shehadi JA, Elzein SM. Review of commercially available demineralized bone matrix products for spinal fusions: a selection paradigm. Surg Neurol Int. 2017;8:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang H, et al. Demineralized bone matrix carriers and their clinical applications: An overview. Orthop Surg. 2019;11(5):725–37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grabowski G, Cornett CA. Bone graft and bone graft Sustitutes in spine surgery: current concepts and controversies. J Amer Academy of Orthopaedic Surgeons. 2013;21(1):51–9.

    Article  Google Scholar 

  40. Yamaguchi KT Jr, Mosich GM, Jones KJ. Arthroscopic delivery of injectable bone graft for staged revision anterior cruciate ligament reconstruction. Arthrosc Tech. 2017;6(6):e2223–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bhamb N, et al. Comparative efficacy of commonly Avaialble human bone graft substitutes as tested for Postlateral fusion in an athymic rat model. Int J of Spine Surgery. 2019;13(5):437–558.

    Article  Google Scholar 

  42. Plantz MS, Hsu WK. Recent research advances in biologic bone graft materials for spine surgery. Current Review in Musculoskeletal Medicine. 2020;13:318–25.

    Article  Google Scholar 

  43. Lavender C, et al. The Lavender fertilized anterior cruciate ligament reconstruction: a quadriceps tendon all-inside reconstruction fertilized with bone marrow concentrate, demineralized bone matrix, and autograft bone. Arthrosc Tech. 2019;8(9):e1019–23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Skovrlj B, et al. Cellular bone matrices: viable stem cell-containing bone graft substitutes. Spine J. 2014;14(11):2763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dekker, T.J, White, P. and Admas, S.B. 2017. Efficacy of a cellular bone allograft for foot and ankle arthrodesis and revision nonunion procedures. Foot Ankle Int 38(3), pp. 277–282.

    Google Scholar 

  46. Hak DJ. The use of osteoconductive bone graft substitutes in orthopedic trauma. J Am Acad Orthop Surg. 2007;15(9):525–36.

    Article  PubMed  Google Scholar 

  47. Beardmore AA, et al. Effectiveness of local antibiotic delivery with an osteoinductive and octeoconductive bone-graft substitute. J Bone Joint Surg. 2005;87(1):107–12.

    Article  PubMed  Google Scholar 

  48. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res, pp. 2002:81–98.

    Google Scholar 

  49. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.

    Article  PubMed  CAS  Google Scholar 

  50. Buser Z, et al. Synthetic bone graft versu autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;25:509–16.

    Article  PubMed  Google Scholar 

  51. Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2(3):184–99.

    Article  CAS  Google Scholar 

  52. Karageorgiou V, Kaplan D. Porosity of 3D biomaterials and osteogenesis. Biomaterials 2005. 2005;26:5474–91.

    CAS  Google Scholar 

  53. Blokhuis TJ, et al. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma. 2000;49:179–86.

    Article  Google Scholar 

  54. Driskell TD, et al. Development of ceramic and ceramic composite devices for maxillofacial applications. J Biomed Mater Res. 1972;6(1):345–61.

    Article  CAS  PubMed  Google Scholar 

  55. Daculsi G, Passuti N. Effect of macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials. 1990;11:86–7.

    CAS  PubMed  Google Scholar 

  56. Tsuruga E, et al. Pore size of porous hydroxyapatite as a cell- substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317–24.

    Article  CAS  PubMed  Google Scholar 

  57. Kuboki Y, et al. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res. 2002;43:529–34.

    Article  CAS  PubMed  Google Scholar 

  58. Furlong RJ, Osborn JF. Fixation of hip prosthesis by hydroxyapatite ceramic coatings. J Bone Joint Surg. 1991;73B:741–5.

    Article  Google Scholar 

  59. Cho JH, et al. Seven-year results of a tapered, titanium, hydroxyapatite-coated cementless femoral stem in primary total hip arthroplasty. Clin Orthop Surg. 2010;2:214–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38S4:S3–6.

    Article  Google Scholar 

  61. Le Huec JC, et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials. 1995;16(2):113–8.

    Article  PubMed  Google Scholar 

  62. Yu B, et al. Treatment of tibial plateau fractures with high strength injectable calcium sulphate. Int Orthop. 2009;33:1127–33.

    Article  PubMed  Google Scholar 

  63. Kumar Y, et al. Calcium sulfate as a bone graft substitute in the treatment of osseous defects, a prospective study. J Clin Diag Res. 2013;7(12):2926–8.

    Google Scholar 

  64. Somasundaram K, et al. Proximal humeral fractures: the role of calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates. Injury. 2013;44(4):481–7.

    Article  CAS  PubMed  Google Scholar 

  65. Van Lieshout EMM, et al. Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Muscoloskeletal Disorders. 2011;12(34):1–14.

    Google Scholar 

  66. Vereecke G, Lamaitre J. Calculations of the solubility diagrams in the system ca(OH)2-H3PO4-KOPH-HNO3-CO2-H2O. J Cryst Growth. 1990;104:820–32.

    Article  CAS  Google Scholar 

  67. Ohura K, et al. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res. 1996;30(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  68. Russell TA, Leighton RK. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg. 2008;90:2057–61.

    Article  PubMed  Google Scholar 

  69. Wee AT, Wong YS. Percutaneous reduction and injection of Norian bone cement for the treatment of displaced intra-articular calcaneal fractures. Foot Ankle Spec. 2009;2(2):98–106.

    Article  PubMed  Google Scholar 

  70. Liverneaux P, et al. Cement pinning of osteoporotic distal radius fractures with an injectable calcium phosphate bone substitute: report of 6 cases. Eur J Orthop Surg Traumatol. 2006;16:10–6.

    Article  Google Scholar 

  71. Strauss EJ, et al. Calcium phosphate cement augmentation of the femoral neck defect created after dynamic hip screw removal. J Orthop Trauma. 2007;21:295–300.

    Article  PubMed  Google Scholar 

  72. Egol KA, et al. Fracture site augmentation with calcium phosphate cement reduces screw penetration after open reduction-internal fixation of proximal humeral fractures. J Shoulder Elb Surg. 2012;21:741–8.

    Article  Google Scholar 

  73. C., Krop, et al. 2006. Successful posterior interlaminar fusion at the thoracic by sole use of beta-tricalcium phosphate. Arch Orthop Trauma Surg 126(3), pp. 204–210.

    Google Scholar 

  74. Maestretti G, et al. Prospective of stand alone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fracture. Eur Spine J. 2007;16(5):601–10.

    Article  PubMed  Google Scholar 

  75. Deb S. Orthopedic bone cements. Boca Raton: CRC Press; 2008.

    Book  Google Scholar 

  76. Klazen C, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (VERTOS II): An open-label randomized trial. Lancet. 2010;376:1085–92.

    Article  PubMed  Google Scholar 

  77. Bae H, et al. A prospective randomized FDA-IDE trial comparing Cortoss with PMMS in vertebroplasty. Spine. 2012;37(7):544–50.

    Article  PubMed  Google Scholar 

  78. Hench LL, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117–41.

    Article  Google Scholar 

  79. Rahaman M. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smit RS, van der Velde D, Hegeman JH. Augmented pin fixation with Cortoss for an unstable AO-A3 type distal radius fracture in a patient with manifest osteoporosis. Arch Orthop Trauma Surg. 2008;128(9):989–93.

    Article  CAS  PubMed  Google Scholar 

  81. Andrzejowski P, Giannoudis PV. The ‘diamond concept’ for long bone non-union management. J Orthop Traumatol. 2019;20(21)

    Google Scholar 

  82. Ho-Shui-Ling A, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, D.R., Poser, J.W. (2021). Biomechanics of Bone Grafts and Bone Substitutes. In: Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F. (eds) Orthopaedic Biomechanics in Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-81549-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81549-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81548-6

  • Online ISBN: 978-3-030-81549-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics