Skip to main content

Subcortical Processing of Speech Sounds

  • Chapter
  • First Online:
Speech Perception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 74))

  • 1223 Accesses

Abstract

Extant literature identifies the subcortical auditory system as critical to the encoding of key acoustic features relevant to speech. In this chapter, rather than view the subcortex as “lower-level” passive relay stations exclusively involved in speech encoding, a systems neuroscience approach is adopted that argues for active subcortical-cortical interactions during speech processing, subserved by afferent (bottom-up) as well as efferent (top-down) connectivity. These interactions are not only relevant to speech encoding but are critical to the process of mapping highly variable, temporally ephemeral signals to meaningful, behaviorally relevant units. An overview of subcortical and relevant cortical anatomy and physiology is provided as well as a discussion of contemporary neuroscience methodology used to study speech processing. Subcortical plasticity as a function of positive and negative individual experience is discussed, highlighting an emerging understanding of subcortical processes in the extraction, encoding, and experience-dependent modulation of speech signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9(1):357–381

    Article  CAS  PubMed  Google Scholar 

  • Ali AA, Jerger J (1992) Phase coherence of the middle-latency response in the elderly. Scand Audiol 21(3):187–194

    Article  CAS  PubMed  Google Scholar 

  • Ananthakrishnan S, Krishnan A, Bartlett E (2016) Human frequency-following response: neural representation of envelope and temporal fine structure in listeners with normal hearing and sensorineural hearing loss. Ear Hear 37(2):e91–e103

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson S (2017) Clinical translation: aging, hearing loss, and amplification. In: Kraus N, Anderson S, White-Schwoch T et al (eds) The frequency-following response. Springer handbook of auditory research, vol 6. Springer, Cham, pp 267–294

    Chapter  Google Scholar 

  • Anderson S, Skoe E, Chandrasekaran B et al (2010) Brainstem correlates of speech-in-noise perception in children. Hear Res 270(1–2):151–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Parbery-Clark A, Yi HG et al (2011) A neural basis of speech-in-noise perception in older adults. Ear Hear 32(6):750–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Parbery-Clark A, White-Schwoch T et al (2012) Aging affects neural precision of speech encoding. J Neurosci 32(41):14156–14164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Parbery-Clark A, White-Schwoch T et al (2013) Effects of hearing loss on the subcortical representation of speech cues. J Acoust Soc Am 133(5):3030–3038

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashby FG, Ell SW (2001) The neurobiology of human category learning. Trends Cogn Sci 5(5):204–210

    Article  PubMed  Google Scholar 

  • Ashby FG, Ennis JM (2006) The role of the basal ganglia in category learning. Psychol Learn Motiv 46:1–36

    Article  Google Scholar 

  • Ashby FG, Maddox WT (2011) Human category learning 2.0. Ann N Y Acad Sci 1224:147–161

    Article  PubMed  Google Scholar 

  • Ashby FG, Alfonso-Reese LA, Waldron EM (1998) A neuropsychological theory of multiple systems in category learning. Psychol Rev 105(3):442–481

    Article  CAS  PubMed  Google Scholar 

  • Ayala YA, Lehmann A, Merchant H (2017) Monkeys share the neurophysiological basis for encoding sound periodicities captured by the frequency-following response with humans. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Banai K, Hornickel J, Skoe E et al (2009) Reading and subcortical auditory function. Cereb Cortex 19(11):2699–2707

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron-Cohen S, Belmonte MK (2005) Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci 28:109–126

    Article  CAS  PubMed  Google Scholar 

  • Bartlett EL (2013) The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain Lang 126(1):29–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann S, Griffiths TD, Sun L et al (2011) Orthogonal representation of sound dimensions in the primate midbrain. Nat Neurosci 14(4):423–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidelman GM (2015) Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR. Hear Res 323:68–80

    Article  PubMed  Google Scholar 

  • Bidelman GM (2018) Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage 175:56–69

    Article  PubMed  Google Scholar 

  • Bidelman GM, Powers L (2018) Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits. Int J Audiol 57(9):665–672

    Article  PubMed  Google Scholar 

  • Bidelman GM, Lowther JE, Tak SH et al (2017) Mild cognitive impairment is characterized by deficient hierarchical speech coding between auditory brainstem and cortex. J Neurosci 37(13):3610–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billiet CR, Bellis TJ (2011) The relationship between brainstem temporal processing and performance on tests of central auditory function in children with reading disorders. J Speech Lang Hear Res 54(1):228–242

    Article  PubMed  Google Scholar 

  • Bishop DV (2015) The interface between genetics and psychology: lessons from developmental dyslexia. Proc Biol Sci 282:1–8

    Google Scholar 

  • Boets B, de Beeck HPO, Vandermosten M et al (2013) Intact but less accessible phonetic representations in adults with dyslexia. Science 342(6163):1251–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107(18):8452–8456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47(2):236–246

    Article  PubMed  Google Scholar 

  • Chandrasekaran B, Hornickel J, Skoe E et al (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron 64(3):311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran B, Kraus N, Wong PC (2012) Human inferior colliculus activity relates to individual differences in spoken language learning. J Neurophysiol 107(5):1325–1336

    Article  PubMed  Google Scholar 

  • Chandrasekaran B, Koslov SR, Maddox WT (2014a) Toward a dual-learning systems model of speech category learning. Front Psychol 5:1–17

    Article  Google Scholar 

  • Chandrasekaran B, Skoe E, Kraus N (2014b) An integrative model of subcortical auditory plasticity. Brain Topogr 27(4):539–552

    Article  PubMed  Google Scholar 

  • Chandrasekaran B, Yi HG, Blanco NJ, McGeary JE, Maddox WT (2015) Enhanced procedural learning of speech sound categories in a genetic variant of FOXP2. J Neurosci 35(20):7808–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chechik G, Anderson MJ, Bar-Yosef O et al (2006) Reduction of information redundancy in the ascending auditory pathway. Neuron 51(3):359–368

    Article  CAS  PubMed  Google Scholar 

  • Clinard CG, Tremblay KL (2013) Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol 24(7):590–599

    Article  PubMed  Google Scholar 

  • Coffey EB, Herholz SC, Chepesiuk AM et al (2016) Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun 7(1):1–11

    Article  Google Scholar 

  • Coffey EB, Musacchia G, Zatorre RJ (2017) Cortical correlates of the auditory frequency-following and onset responses: EEG and fMRI evidence. J Neurosci 37(4):830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey EB, Nicol T, White-Schwoch T et al (2019) Evolving perspectives on the sources of the frequency-following response. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  • Crosson B, Ford A, McGregor KM et al (2010) Functional imaging and related techniques: an introduction for rehabilitation researchers. J Rehabil Res Dev 47(2):7–34

    Article  Google Scholar 

  • Cuffin BN, Cohen D (1979) Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 47(2):132–146

    Article  CAS  PubMed  Google Scholar 

  • David SV, Mesgarani N, Shamma SA (2007) Estimating sparse spectro-temporal receptive fields with natural stimuli. Network 18(3):191–212

    Article  PubMed  Google Scholar 

  • Davis MH, Johnsrude IS (2003) Hierarchical processing in spoken language comprehension. J Neurosci 23(8):3423–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decaro MS, Thomas RD, Beilock SL (2008) Individual differences in category learning: sometimes less working memory capacity is better than more. Cognition 107(1):284–294

    Article  PubMed  Google Scholar 

  • Delgutte B (1990) Two-tone rate suppression in auditory-nerve fibers: dependence on suppressor frequency and level. Hear Res 49(1–3):225–246

    Article  CAS  PubMed  Google Scholar 

  • Delgutte B (1997) Auditory neural processing of speech. In: Hardcastle WJ, Laver J, Gibbon FE (eds) The handbook of phonetic sciences. Blackwell, Oxford, pp 507–538

    Google Scholar 

  • Delgutte B, Kiang NY (1984a) Speech coding in the auditory nerve: I. Vowel-like sounds. J Acoust Soc Am 75(3):866–878

    Article  CAS  PubMed  Google Scholar 

  • Delgutte B, Kiang NY (1984b) Speech coding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics. J Acoust Soc Am 75(3):897–907

    Article  CAS  PubMed  Google Scholar 

  • Díaz B, Hintz F, Kiebel SJ et al (2012) Dysfunction of the auditory thalamus in developmental dyslexia. Proc Natl Acad Sci U S A 109(34):13841–13846

    Article  PubMed  PubMed Central  Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739

    Article  CAS  PubMed  Google Scholar 

  • Engineer CT, Perez CA, Chen YH et al (2008) Cortical activity patterns predict speech discrimination ability. Nat Neurosci 11(5):603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans EF (1981) The dynamic range problem: place and time coding at the level of cochlear nerve and nucleus. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Springer, Boston, pp 69–85

    Chapter  Google Scholar 

  • Feng G, Gan Z, Wang S et al (2018) Task-general and acoustic-invariant neural representation of speech categories in the human brain. Cereb Cortex 28(9):3241–3254

    Article  PubMed  Google Scholar 

  • Feng G, Yi HG, Chandrasekaran B (2019) The role of the human auditory corticostriatal network in speech learning. Cereb Cortex 29(10):4077–4089

    Article  PubMed  Google Scholar 

  • Filippini R, Schochat E (2009) Brainstem evoked auditory potentials with speech stimulus in the auditory processing disorder. Braz J Otorhinolaryngol 75(3):449–455

    PubMed  Google Scholar 

  • Forte AE, Etard O, Reichenbach T (2017) The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention. elife 6:e27203

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritz J, Shamma S, Elhilali M et al (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6(11):1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Fujihira H, Shiraishi K, Remijn GB (2017) Elderly listeners with low intelligibility scores under reverberation show degraded subcortical representation of reverberant speech. Neurosci Lett 637:102–107

    Article  CAS  PubMed  Google Scholar 

  • Füllgrabe C, Meyer B, Lorenzi C (2003) Effect of cochlear damage on the detection of complex temporal envelopes. Hear Res 178(1–2):35–43

    Article  PubMed  Google Scholar 

  • Galbraith GC, Jhaveri SP, Kuo J (1997) Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition. Electroencephalogr Clin Neurophysiol 102(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Gallun FJ, Diedesch AC, Kubli LR et al (2012) Performance on tests of central auditory processing by individuals exposed to high-intensity blasts. J Rehabil Res Dev 49(7):1005–1025

    Article  PubMed  Google Scholar 

  • Gandour J (1983) Tone perception in Far Eastern languages. J Phon 11(2):149–175

    Article  Google Scholar 

  • Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci U S A 97(14):8081–8086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes AR, Melcher JR, Talavage TM et al (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6(1):33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ et al (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497

    Article  Google Scholar 

  • Hecox K, Galambos R (1974) Brain stem auditory evoked responses in human infants and adults. Arch Otolaryngol 99(1):30–33

    Article  CAS  PubMed  Google Scholar 

  • Hélie S, Ell SW, Ashby FG (2015) Learning robust cortico-cortical associations with the basal ganglia: an integrative review. Cortex 64:123–135

    Article  PubMed  Google Scholar 

  • Hillenbrand J, Getty LA, Clark MJ et al (1995) Acoustic characteristics of American English vowels. J Acoust Soc Am 97(5):3099–3111

    Article  CAS  PubMed  Google Scholar 

  • Holt LL (2005) Temporally nonadjacent nonlinguistic sounds affect speech categorization. Psychol Sci 16(4):305–312

    Article  PubMed  Google Scholar 

  • Holt LL, Lotto AJ (2002) Behavioral examinations of the level of auditory processing of speech context effects. Hear Res 167(1–2):156–169

    Article  PubMed  Google Scholar 

  • Hornickel J, Kraus N (2013) Unstable representation of sound: a biological marker of dyslexia. J Neurosci 33(8):3500–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornickel J, Skoe E, Nicol T et al (2009) Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proc Natl Acad Sci U S A 106(31):13022–13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornickel J, Knowles E, Kraus N (2012) Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hear Res 284(1–2):52–58

    Article  PubMed  Google Scholar 

  • Horwitz AR, Ahlstrom JB, Dubno JR (2011) Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing. J Acoust Soc Am 130(5):2928–2938

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshi E, Tremblay L, Féger J et al (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493

    Article  CAS  PubMed  Google Scholar 

  • Jamieson DG, Morosan DE (1986) Training non-native speech contrasts in adults: acquisition of the English /ð/−/θ/ contrast by francophones. Percept Psychophys 40(4):205–215

    Article  CAS  PubMed  Google Scholar 

  • Jeng FC, Hu J, Dickman B et al (2011) Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults. Ear Hear 32(6):699–707

    Article  PubMed  Google Scholar 

  • Johnson M, Lin F (2014) Communication difficulty and relevant interventions in mild cognitive impairment: implications for neuroplasticity. Top Geriatr Rehabil 30(1):18–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jueptner M, Frith CD, Brooks DJ et al (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77(3):1325–1337

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Rhode WS, Greenberg SR (1986) Responses of cochlear nucleus neurons to speech signals: neural encoding of pitch, intensity and other parameters. In: Moore BCJ, Patterson RD (eds) Auditory frequency selectivity. Nato ASI series, vol 119. Springer, Boston, pp 281–288

    Chapter  Google Scholar 

  • King A, Hopkins K, Plack CJ (2014) The effects of age and hearing loss on interaural phase difference discrimination. J Acoust Soc Am 135(1):342–351

    Article  PubMed  Google Scholar 

  • Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56(1):259–269

    Article  PubMed  Google Scholar 

  • Kraus N, Anderson S (2015) Low socioeconomic status linked to impaired auditory processing. Hear J 68(5):38–40

    Article  Google Scholar 

  • Kraus N, Nicol T (2014) The cognitive auditory system: the role of learning in shaping the biology of the auditory system. In: Popper A, Fay R (eds) Perspectives on auditory research. Springer handbook of auditory research, vol 50. Springer, New York, pp 299–319

    Google Scholar 

  • Kraus N, White-Schwoch T (2015) Unraveling the biology of auditory learning: a cognitive–sensorimotor–reward framework. Trends Cogn Sci 19(11):642–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus N, Thompson EC, Krizman J et al (2016) Auditory biological marker of concussion in children. Sci Rep 6:1–10

    Article  Google Scholar 

  • Kraus N, Anderson S, White-Schwoch T (2017a) The frequency-following response: a window into human communication. In: Kraus N, Anderson S, White-Schwoch T et al (eds) The frequency-following response. Springer handbook of auditory research, vol 61. Springer, Cham, pp 1–15

    Chapter  Google Scholar 

  • Kraus N, Lindley T, Colegrove D et al (2017b) The neural legacy of a single concussion. Neurosci Lett 646:21–23

    Article  CAS  PubMed  Google Scholar 

  • Krishnan A (2002) Human frequency-following responses: representation of steady-state synthetic vowels. Hear Res 166(1–2):192–201

    Article  PubMed  Google Scholar 

  • Krishnan A, Gandour JT (2009) The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain Lang 110(3):135–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan A, Xu Y, Gandour JT et al (2004) Human frequency-following response: representation of pitch contours in Chinese tones. Hear Res 189(1–2):1–12

    Article  PubMed  Google Scholar 

  • Krishnan A, Xu Y, Gandour JT et al (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Res 25(1):161–168

    Article  Google Scholar 

  • Krishnan A, Gandour JT, Bidelman GM (2010) The effects of tone language experience on pitch processing in the brainstem. J Neurolinguistics 23(1):81–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Krizman J, Marian V, Shook A et al (2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci U S A 109(20):7877–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl PK (1981) Discrimination of speech by nonhuman animals: basic auditory sensitivities conducive to the perception of speech-sound categories. J Acoust Soc Am 70(2):340–349

    Article  Google Scholar 

  • Kuhl PK, Miller JD (1978) Speech perception by the chinchilla: identification functions for synthetic VOT stimuli. J Acoust Soc Am 63(3):905–917

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Singh NK (2015) BioMARK as electrophysiological tool for assessing children at risk for (central) auditory processing disorders without reading deficits. Hear Res 324:54–58

    Article  PubMed  Google Scholar 

  • Ladefoged P, Broadbent DE (1957) Information conveyed by vowels. J Acoust Soc Am 29(1):98–104

    Article  Google Scholar 

  • Lau JC, Wong PC, Chandrasekaran B (2017) Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns. J Neurophysiol 117(2):594–603

    Article  PubMed  Google Scholar 

  • Lim SJ, Holt LL (2011) Learning foreign sounds in an alien world: videogame training improves non-native speech categorization. Cogn Sci 35(7):1390–1405

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim SJ, Fiez JA, Holt LL (2014) How may the basal ganglia contribute to auditory categorization and speech perception? Front Neurosci 8:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim SJ, Fiez JA, Holt LL (2019) Role of the striatum in incidental learning of sound categories. Proc Natl Acad Sci U S A 116(110):4671–4680

    Article  PubMed  PubMed Central  Google Scholar 

  • Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13(1):83–89

    Article  PubMed  Google Scholar 

  • Lively SE, Logan JS, Pisoni DB (1993) Training Japanese listeners to identify English /r/ and /l/ II: the role of phonetic environment and talker variability in learning new perceptual categories. J Acoust Soc Am 94(3):1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Llanos F, McHaney JR, Schuerman WL, Han GY, Leonard MK, Chandrasekaran B (2020) Non-invasive peripheral nerve stimulation selectively enhances speech category learning in adults. NPJ Sci Learn 5(1):1–11

    Article  Google Scholar 

  • Lorenzi C, Debruille L, Garnier S et al (2009) Abnormal processing of temporal fine structure in speech for frequencies where absolute thresholds are normal. J Acoust Soc Am 125(1):27–30

    Article  PubMed  Google Scholar 

  • Lotto AJ, Kluender KR, Holt LL (1997) Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). J Acoust Soc Am 102(2):1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Maddox RK, Lee AKC (2018) Auditory brainstem responses to continuous natural speech in human listeners. eNeuro 5(1):1–13

    Article  Google Scholar 

  • Marsh JT, Worden FG, Smith JC (1970) Auditory frequency-following response: neural or artifact? Science 169(3951):1222–1223

    Article  CAS  PubMed  Google Scholar 

  • Maruthy S, Kumar UA, Gnanateja GN (2017) Functional interplay between the putative measures of rostral and caudal efferent regulation of speech perception in noise. J Assoc Res Otolaryngol 18(4):635–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Medwetsky L (2011) Spoken language processing model: bridging auditory and language processing to guide assessment and intervention. Lang Speech Hear Serv Sch 42(3):286–296

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1996) The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci U S A 93(16):8683–8687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DR (2006) Auditory processing disorder (APD): definition, diagnosis, neural basis, and intervention. Audiol Med 4(1):4–11

    Article  Google Scholar 

  • Murdoch BE, Whelan BM (2009) Speech and language disorders associated with subcortical pathology. Wiley & Sons Ltd, West Sussex

    Google Scholar 

  • Nelken I (2008) Processing of complex sounds in the auditory system. Curr Opin Neurobiol 18(4):413–417

    Article  CAS  PubMed  Google Scholar 

  • Nicolson RI, Fawcett AJ, Dean P (2001) Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci 24(9):508–511

    Article  CAS  PubMed  Google Scholar 

  • Nomura EM, Reber PJ (2008) A review of medial temporal lobe and caudate contributions to visual category learning. Neurosci Biobehav Rev 32(2):279–291

    Article  CAS  PubMed  Google Scholar 

  • Nomura EM, Maddox WT, Filoteo JV et al (2007) Neural correlates of rule-based and information-integration visual category learning. Cereb Cortex 17(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Nourski KV (2017) Auditory processing in the human cortex: an intracranial electrophysiology perspective. Laryngoscope Investig Otolaryngol 2(4):147–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto-Meyer S, Krizman J, White-Schwoch T et al (2018) Children with autism spectrum disorder have unstable neural responses to sound. Exp Brain Res 236(3):733–743

    Article  PubMed  Google Scholar 

  • Parvizi J (2009) Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 13(8):354–359

    Article  PubMed  Google Scholar 

  • Pasley BN, David SV, Mesgarani N et al (2012) Reconstructing speech from human auditory cortex. PLoS Biol 10(1):1–13

    Article  Google Scholar 

  • Pichora-Fuller MK, Schneider BA, MacDonald E et al (2007) Temporal jitter disrupts speech intelligibility: a simulation of auditory aging. Hear Res 223(1–2):114–121

    Article  PubMed  Google Scholar 

  • Plyler PN, Ananthanarayan AK (2001) Human frequency-following responses: representation of second formant transitions in normal-hearing and hearing-impaired listeners. J Am Acad Audiol 12(10):523–533

    Article  CAS  PubMed  Google Scholar 

  • Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162(2):486–500

    Article  CAS  PubMed  Google Scholar 

  • Presacco A, Jenkins K, Lieberman R et al (2015) Effects of aging on the encoding of dynamic and static components of speech. Ear Hear 36(6):e352–e363

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10(10):724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranasinghe KG, Vrana WA, Matney CJ et al (2012) Neural mechanisms supporting robust discrimination of spectrally and temporally degraded speech. J Assoc Res Otolaryngol 13(4):527–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranasinghe KG, Vrana WA, Matney CJ et al (2013) Increasing diversity of neural responses to speech sounds across the central auditory pathway. Neuroscience 252:80–97

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84(2):141–219

    Article  CAS  PubMed  Google Scholar 

  • Reetzke R, Xie Z, Chandrasekaran B (2017) Neurobiology of literacy and reading disorders. In: Kraus N, Anderson S, White-Schwoch T et al (eds) The frequency-following response. Springer handbook of auditory research, vol 6. Springer, Cham, pp 251–266

    Chapter  Google Scholar 

  • Reetzke R, Xie Z, Llanos F et al (2018) Tracing the trajectory of sensory plasticity across different stages of speech learning in adulthood. Curr Biol 28(9):1419–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ress D, Chandrasekaran B (2013) Tonotopic organization in the depth of human inferior colliculus. Front Hum Neurosci 7:1–10

    Article  Google Scholar 

  • Rocha-Muniz CN, Befi-Lopes DM, Schochat E (2012) Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hear Res 294(1–2):143–152

    Article  PubMed  Google Scholar 

  • Rocha-Muniz CN, Filippini R, Neves-Lobo IF et al (2016) Can speech-evoked Auditory Brainstem Response become a useful tool in clinical practice? CoDAS 28(1):77–80

    Article  PubMed  Google Scholar 

  • Romanski LM, Averbeck BB (2009) The primate cortical auditory system and neural representation of conspecific vocalizations. Annu Rev Neurosci 32:315–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo N, Nicol T, Trommer B et al (2009) Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci 12(4):557–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Schochat E, Rocha-Muniz CN, Filippini R (2017) Understanding auditory processing disorder through the FFR. In: Kraus N, Anderson S, White-Schwoch T et al (eds) The frequency-following response. Springer handbook of auditory research, vol 6. Springer, Cham, pp 225–250

    Chapter  Google Scholar 

  • Schreiner CE, Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388(6640):383–386

    Article  CAS  PubMed  Google Scholar 

  • Seger CA (2006) The basal ganglia in human learning. Neuroscientist 12(4):285–290

    Article  PubMed  Google Scholar 

  • Simões MB (2009) Auditory steady state response in children with dyslexia and with (central) auditory processing disorders. Master’s dissertation, University of São Paulo, Brazil

    Google Scholar 

  • Sitek KR, Gulban OF, Calabrese E et al (2019) Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. elife 8:1–36

    Article  Google Scholar 

  • Skoe E, Chandrasekaran B (2014) The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hear Res 311:36–48

    Article  PubMed  Google Scholar 

  • Skoe E, Kraus N (2010) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31(3):302–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe E, Kraus N (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J Neurosci 32(34):11507–11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smayda KE, Chandrasekaran B, Maddox WT (2015) Enhanced cognitive and perceptual processing: a computational basis for the musician advantage in speech learning. Front Psychol 6:1–14

    Article  Google Scholar 

  • Smith JC, Marsh JT, Brown WS (1975) Far-field recorded frequency-following responses: evidence for the locus of brainstem sources. Clin Neurophysiol 39(5):465–472

    Article  CAS  Google Scholar 

  • Song JH, Skoe E, Wong PC et al (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J Cogn Neurosci 20(10):1892–1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling AJ, Lu ZL, Manis FR et al (2005) Deficits in perceptual noise exclusion in developmental dyslexia. Nat Neurosci 8(7):862–863

    Article  CAS  PubMed  Google Scholar 

  • Stein J, Walsh V (1997) To see but not to read: the magnocellular theory of dyslexia. Trends Neurosci 20(4):147–152

    Article  CAS  PubMed  Google Scholar 

  • Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4(10):783–794

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan J, Krishnan A, Gandour JT (2008) Pitch encoding in speech and nonspeech contexts in the human auditory brainstem. Neuroreport 19(11):1163–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallabha GK, McClelland JL (2007) Success and failure of new speech category learning in adulthood: consequences of learned Hebbian attractors in topographic maps. Cogn Affect Behav Neurosci 7(1):53–73

    Article  PubMed  Google Scholar 

  • Vallabha GK, McClelland JL, Pons F et al (2007) Unsupervised learning of vowel categories from infant-directed speech. Proc Natl Acad Sci U S A 104(33):13273–13278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Werff KR, Burns KS (2011) Brain stem responses to speech in younger and older adults. Ear Hear 32(2):168–180

    Article  PubMed  Google Scholar 

  • von Kriegstein K, Patterson RD, Griffiths TD (2008) Task-dependent modulation of medial geniculate body is behaviorally relevant for speech recognition. Curr Biol 18(23):1855–1859

    Article  Google Scholar 

  • Warren RM (1961) Illusory changes of distinct speech upon repetition—the verbal transformation effect. Br J Psychol 52(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • Warrier CM, Abrams DA, Nicol TG et al (2011) Inferior colliculus contributions to phase encoding of stop consonants in an animal model. Hear Res 282(1–2):108–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5(4):279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch T, Carr KW, Thompson EC et al (2015) Auditory processing in noise: a preschool biomarker for literacy. PLoS Biol 13(7):e1002196

    Article  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch T, Nicol T, Warrier CM et al (2016) Individual differences in human auditory processing: insights from single-trial auditory midbrain activity in an animal model. Cereb Cortex 27(11):5095–5115

    Article  PubMed Central  Google Scholar 

  • Willmore BD, Schoppe O, King AJ et al (2016) Incorporating midbrain adaptation to mean sound level improves models of auditory cortical processing. J Neurosci 36(2):280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winer JA (2005) Decoding the auditory corticofugal systems. Hear Res 207(1–2):1–9

    Article  PubMed  Google Scholar 

  • Wong PCM, Skoe E, Russo NM et al (2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci 10(4):420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Reetzke R, Chandrasekaran B (2017) Stability and plasticity in neural encoding of linguistically relevant pitch patterns. J Neurophysiol 117(3):1409–1424

    Article  Google Scholar 

  • Xie Z, Reetzke R, Chandrasekaran B (2018) Taking attention away from the auditory modality: context-dependent effects on early sensory encoding of speech. Neuroscience 384:64–75

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Reetzke R, Chandrasekaran B (2019) Machine learning approaches to analyze speech-evoked neurophysiological responses. J Speech Lang Hear Res 62(3):587–601

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Krishnan A, Gandour JT (2006) Specificity of experience-dependent pitch representation in the brainstem. Neuroreport 17(15):1601–1605

    Article  PubMed  Google Scholar 

  • Yeo BT, Eickhoff SB (2016) Systems neuroscience: a modern map of the human cerebral cortex. Nature 536(7615):152–154

    Article  CAS  PubMed  Google Scholar 

  • Yi HG, Smiljanic R, Chandrasekaran B (2014) The neural processing of foreign-accented speech and its relationship to listener bias. Front Hum Neurosci 8: 768

    Google Scholar 

  • Yi HG, Maddox WT, Mumford JA et al (2016) The role of corticostriatal systems in speech category learning. Cereb Cortex 26(4):1409–1420

    Article  PubMed  Google Scholar 

  • Yi HG, Xie Z, Reetzke R et al (2017) Vowel decoding from single-trial speech-evoked electrophysiological responses: a feature-based machine learning approach. Brain Behav 7(6):e00665

    Article  PubMed  PubMed Central  Google Scholar 

  • Yip M (2002) Tone. Cambridge University Press, New York

    Book  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66(5):1381–1403

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Henry KS, Heinz MG (2014) Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas. Hear Res 309:55–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under Award Numbers R01DC015504 (BC) and R01DC013315 (BC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethics Requirements

  • Bharath Chandrasekaran declares that he has no conflict of interest.

  • Rachel Tessmer declares that she has no conflict of interest.

  • G. Nike Gnanateja declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharath Chandrasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrasekaran, B., Tessmer, R., Gnanateja, G.N. (2022). Subcortical Processing of Speech Sounds. In: Holt, L.L., Peelle, J.E., Coffin, A.B., Popper, A.N., Fay, R.R. (eds) Speech Perception. Springer Handbook of Auditory Research, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-030-81542-4_2

Download citation

Publish with us

Policies and ethics