Skip to main content

Acute Neurologic Injury in the ICU: Role of Transcranial Doppler in Disorders of the Vertebrobasilar Circulation

  • Chapter
  • First Online:
Neurosonology in Critical Care

Abstract

Transcranial Doppler (TCD) ultrasound of the vertebrobasilar system offers a practical, non-invasive evaluation of the posterior circulation and may be helpful in the identification of cerebral vasospasm, intracranial vascular stenotic disease, and microembolus signal detection. Hemodynamics of the posterior circulation can be assessed using ultrasound in stroke and traumatic brain injury (TBI) and basilar artery flow characteristics are part of the complete TCD assessment for brain death. Cerebral autoregulation and vascular reactivity can offer insight into brain health in the posterior circulation, particularly in TBI. While anatomic limitations exist, size, patency, direction, and velocity of flow as well as microembolus detection are all feasible in the vertebrobasilar circulation using ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bluth EI, Merritt CR, Sullivan MA, Bernhardt S, Darnell B. Usefulness of duplex ultrasound in evaluating vertebral arteries. J Ultrasound Med. 1989;8(5):229–35.

    Article  CAS  PubMed  Google Scholar 

  2. Buckenham TM, Wright IA. Ultrasound of the extracranial vertebral artery. Br J Radiol. 2004;77(913):15–20.

    Article  CAS  PubMed  Google Scholar 

  3. Davis PC, Nilsen B, Braun IF, Hoffman JC. A prospective comparison of duplex sonography vs angiography of the vertebral arteries. Am J Neuroradiol. 1986;7(6):1059–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Uflacker R. Atlas of vascular anatomy. An angiographic approach. Philadelphia, PA: Lippincott Williams; 1997.

    Google Scholar 

  5. Nicolau C, Gilabert R, Chamorro A, Vázquez F, Bargalló N, Brú C. Doppler sonography of the intertransverse segment of the vertebral artery. J Ultrasound Med. 2000;19(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  6. Trattnig S, Hübsch P, Schuster H, Pölzleitner D. Color-coded Doppler imaging of normal vertebral arteries. Stroke. 1990;21(8):1222–5.

    Article  CAS  PubMed  Google Scholar 

  7. Purkayastha S, Sorond F. Transcranial Doppler ultrasound: technique and application. In: Seminars in neurology, vol. 32, No. 4. NIH Public Access; 2012. p. 411.

    Google Scholar 

  8. Bathala L, Mehndiratta MM, Sharma VK. Transcranial Doppler: technique and common findings (Part 1). Ann Indian Acad Neurol. 2013;16(2):174.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vergouwen MDI, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.

    Article  PubMed  Google Scholar 

  10. Kassell NF, Torner JC, Jane JA, et al. The international co-operative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg. 1990;73(18).

    Google Scholar 

  11. Sloan MA, Burch CM, Wozniak MA, Rothman MI, Rigamonti D, Permutt T, et al. Transcranial Doppler detection of vertebrobasilar vasospasm following subarachnoid hemorrhage. Stroke. 1994;25(11):2187–97.

    Article  CAS  PubMed  Google Scholar 

  12. Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33(1):72–8.

    Article  PubMed  Google Scholar 

  13. Sviri GE, Ghodke B, Britz GW, Douville CM, Haynor DR, Mesiwala AH, et al. Transcranial Doppler grading criteria for basilar artery vasospasm. Neurosurgery. 2006;59(2):360–6.

    Article  PubMed  Google Scholar 

  14. Sviri GE, Newell DW, Lewis DH, Douville C, Ghodke B, Chowdhary M, et al. Impact of basilar artery vasospasm on outcome in patients with severe cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2006;37(11):2738–43.

    Article  PubMed  Google Scholar 

  15. Gottesman RF, Sharma P, Robinson KA, Arnan M, Tsui M, Ladha K, et al. Clinical characteristics of symptomatic vertebral artery dissection. A systematic review. Neurol. 2012;18(5):245.

    Google Scholar 

  16. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001;344(12):898–906.

    Article  CAS  PubMed  Google Scholar 

  17. Kim BM, Suh SH, Park SI, Shin YS, Chung EC, Lee MH, et al. Management and clinical outcome of acute basilar artery dissection. Am J Neuroradiol. 2008;29(10):1937–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Bray JM, Penisson-Besnier I, Dubas F, Emile J. Extracranial and intracranial vertebrobasilar dissections: diagnosis and prognosis. J Neurol Neurosurg Psychiatry. 1997;63(1):46–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sturzenegger M, Mattle HP, Rivoir A, Rihs F, Schmid C. Ultrasound findings in spontaneous extracranial vertebral artery dissection. Stroke. 1993;24(12):1910–21.

    Article  CAS  PubMed  Google Scholar 

  20. Nebelsieck J, Sengelhoff C, Nassenstein I, Maintz D, Kuhlenbäumer G, Nabavi DG, et al. Sensitivity of neurovascular ultrasound for the detection of spontaneous cervical artery dissection. J Clin Neurosci. 2009;16(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  21. Vassileva E, Getsov P, Vavrek E, Daskalov M. Detection of basilar artery dissection by ultrasound. J Stroke Cerebrovasc Dis. 2015;24(5):e127–8.

    Article  PubMed  Google Scholar 

  22. Ruecker M, Furtner M, Knoflach M, Werner P, Gotwald T, Chemelli A, et al. Basilar artery dissection: series of 12 consecutive cases and review of the literature. Cerebrovasc Dis. 2010;30(3):267–76.

    Article  CAS  PubMed  Google Scholar 

  23. Dittrich R, Dziewas R, Ritter MA, Kloska SP, Bachmann R, Nassenstein I, et al. Negative ultrasound findings in patients with cervical artery dissection. J Neurol. 2006;253(4):424–33.

    Article  CAS  PubMed  Google Scholar 

  24. Kasner SE, Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, et al. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Circulation. 2006;113(4):555–63.

    Article  PubMed  Google Scholar 

  25. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365(11):993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White H, Boden-Albala B, Wang C, Elkind MS, Rundek T, Wright CB, et al. Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study. Circulation. 2005;111(10):1327–31.

    Article  PubMed  Google Scholar 

  27. Wong KS, Huang YN, Gao S, Lam WW, Chan YL, Kay R. Intracranial stenosis in Chinese patients with acute stroke. Neurology. 1998;50(3):812–3.

    Article  CAS  PubMed  Google Scholar 

  28. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352(13):1305–16.

    Article  CAS  PubMed  Google Scholar 

  29. Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, et al. The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology. 2007;68(24):2099–106.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao L, Barlinn K, Sharma VK, Tsivgoulis G, Cava LF, Vasdekis SN, et al. Velocity criteria for intracranial stenosis revisited: an international multicenter study of transcranial Doppler and digital subtraction angiography. Stroke. 2011;42(12):3429–34.

    Article  PubMed  Google Scholar 

  31. Vuković-Cvetković V. Microembolus detection by transcranial Doppler sonography: review of the literature. Stroke Res Treat. 2012;2012

    Google Scholar 

  32. Srinivasan J, Newell DW, Sturzenegger M, Mayberg MR, Winn HR. Transcranial Doppler in the evaluation of internal carotid artery dissection. Stroke. 1996;27(7):1226–30.

    Article  CAS  PubMed  Google Scholar 

  33. Droste DW, Junker K, Stögbauer F, Lowens S, Besselmann M, Braun B, et al. Clinically silent circulating microemboli in 20 patients with carotid or vertebral artery dissection. Cerebrovasc Dis. 2001;12(3):181–5.

    Article  CAS  PubMed  Google Scholar 

  34. Hwang J, Kim SJ, Hong JM, Bang OY, Chung CS, Lee KH, et al. Microembolic signals in acute posterior circulation cerebral ischemia: sources and consequences. Stroke. 2012;43(3):747–52.

    Article  PubMed  Google Scholar 

  35. Del Sette M, Dinia L, Rizzi D, Sugo A, Albano B, Gandolfo C. Diagnosis of right-to-left shunt with transcranial Doppler and vertebrobasilar recording. Stroke. 2007;38(8):2254–6.

    Article  PubMed  Google Scholar 

  36. Sharma AK, Bathala L, Batra A, Mehndiratta MM, Sharma VK. Transcranial Doppler: techniques and advanced applications: part 2. Ann Indian Acad Neurol. 2016;19(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R, et al. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: a bivariate meta-analysis of prospective studies. JACC Cardiovasc Imaging. 2014;7(3):236–50.

    Article  PubMed  Google Scholar 

  38. Guo YZ, Gao YS, Guo ZN, Niu PP, Yang Y, Xing YQ. Comparison of vertebral artery and middle cerebral artery monitoring for right-to-left shunt detection by contrast-enhanced transcranial Doppler. Sci Rep. 2016;6:24932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Osiro S, Zurada A, Gielecki J, Shoja MM, Tubbs RS, Loukas M. A review of subclavian steal syndrome with clinical correlation. Med Sci Monit. 2012;18(5):RA57.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mousa AY, Morkous R, Broce M, Yacoub M, Sticco A, Viradia R, et al. Validation of subclavian duplex velocity criteria to grade severity of subclavian artery stenosis. J Vasc Surg. 2017;65(6):1779–85.

    Article  PubMed  Google Scholar 

  41. Harper C, Cardullo PA, Weyman AK, Patterson RB. Transcranial Doppler ultrasonography of the basilar artery in patients with retrograde vertebral artery flow. J Vasc Surg. 2008;48(4):859–64.

    Article  PubMed  Google Scholar 

  42. Matta B, Czosnyka M. Chapter 7: Transcranial Doppler Ultrasonography in Anesthesia and Neurosurgery. In: Cottrell JE, Patel P, editors. Neuroanesthesia. 6th ed. Philadelphia, PA: Elsevier; 2017.

    Google Scholar 

  43. Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation in humans. Stroke. 1989;20:45.

    Article  CAS  PubMed  Google Scholar 

  44. Aaslid R, Newell DW, Stooss R, et al. Assessment of cerebral autoregulationmdynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke. 1991;22:1148.

    Article  CAS  PubMed  Google Scholar 

  45. Jiménez-Caballero PE, Segura T. Normal values of cerebral vasomotor reactivity using the breath-holding test. Rev Neurol. 2006;43(10):598–602.

    PubMed  Google Scholar 

  46. Park CW, Sturzenegger M, Douville CM, Aaslid R, Newell DW. Autoregulatory response and CO2 reactivity of the basilar artery. Stroke. 2003;34(1):34–9.

    Article  PubMed  Google Scholar 

  47. Kimiagar I, Bass A, Rabey JM, Bornstein NM, Gur AY. Long-term follow-up of patients with asymptomatic occlusion of the internal carotid artery with good and impaired cerebral vasomotor reactivity. Eur J Neurol. 2010;17(10):1285–90.

    Article  CAS  PubMed  Google Scholar 

  48. Park TH, Park SH, Yoon YC, Kwon OS. Vasomotor reactivity of the basilar artery in patients with occlusive vascular diseases in the anterior circulation. J Korean Neurol Assoc. 2006;24(3):204–9.

    Google Scholar 

  49. Ract C, Le Moigno S, Bruder N, Vigue B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med. 2007;33:645–51.

    Article  PubMed  Google Scholar 

  50. Sloan MA, Alexandrov AV, Tegeler CH. Assessment: Transcranial Doppler ultrasonography: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2004;62:1468.

    Article  CAS  PubMed  Google Scholar 

  51. Purkayastha S, Sorond FA, Lyng S, Frantz J, Murphy MN, Hynan LS, et al. Impaired cerebral vasoreactivity despite symptom resolution in sports-related concussion. J Neurotrauma. 2019;

    Google Scholar 

  52. Lele AV, Watanitanon A, Lakireddy V, Clark-Bell C, Moore A, Zimmerman JJ, et al. Prevalence, evolution, and extent of impaired cerebral autoregulation in children hospitalized with complex mild traumatic brain injury. Pediatr Crit Care Med. 2018;

    Google Scholar 

  53. Vavilala MS, Farr CK, Watanitanon A, Clark-Bell BC, Chandee T, Moore A. Early changes in cerebral autoregulation among youth hospitalized after sports-related traumatic brain injury. Brain Inj. 2018;32(2):269–75.

    Article  PubMed  Google Scholar 

  54. Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of transcranial Doppler in patients with severe traumatic brain injuries. J Neurotrauma. 2017;34:121–7.

    Article  PubMed  Google Scholar 

  55. Ract C, Le Moigno S, Bruder N, Vigué B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med. 2007;33:645–51.

    Article  PubMed  Google Scholar 

  56. Bailey DM, Jones DW, Sinnott A, Brugniaux JV, New KJ, Hodson D, et al. Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clin Sci. 2013;124:177–89.

    Article  CAS  Google Scholar 

  57. da Costa L, van Niftrik CB, Crane D, Fierstra J, Bethune A. Temporal profile of cerebrovascular reactivity impairment, gray matter volumes, and persistent symptoms after mild traumatic head injury. Front Neurol. 2016;7:70.

    PubMed  PubMed Central  Google Scholar 

  58. Albalawi T, Hamner JW, Lapointe M, Meehan WP III, Tan CO. The relationship between cerebral vasoreactivity and post-concussive symptom severity. J Neurotrauma. 2017;34:2700–5.

    Article  PubMed  Google Scholar 

  59. Bonow RH, Witt CE, Mosher BP, Mossa-Basha M, Vavilala MS, Rivara FP, et al. Transcranial Doppler microemboli monitoring for stroke risk stratification in blunt cerebrovascular injury. CCM. 2017;45(10):e1011–7.

    Google Scholar 

  60. Wijdicks EF, Varelas PN, Gronseth GS, Greer DM. Evidence-based guideline update: determining brain death in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010;74(23):1911–8.

    Article  PubMed  Google Scholar 

  61. Hadani M, Bruk B, Ram Z, Knoller N, Spiegelmann R, Segal E. Application of transcranial doppler ultrasonography for the diagnosis of brain death. Intensive Care Med. 1999;25(8):822–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sloan MA. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology: Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2004;62:1468–81.

    Article  CAS  PubMed  Google Scholar 

  63. Chang JJ, Tsivgoulis G, Katsanos AH, Malkoff MD, Alexandrov AV. Diagnostic accuracy of transcranial Doppler for brain death confirmation: systematic review and meta-analysis. Am J Neuroradiol. 2016;37(3):408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alexandrov AV, Tsivgoulis G, Rubiera M, Vadikolias K, Stamboulis E, Molina CA, et al. End-diastolic velocity increase predicts recanalization and neurological improvement in patients with ischemic stroke with proximal arterial occlusions receiving reperfusion therapies. Stroke. 2010;41(5):948–52.

    Article  PubMed  Google Scholar 

  65. Ducrocq X, Braun M, Debouverie M, Junges C, Hummer M, Vespignani H. Brain death and transcranial Doppler: experience in 130 cases of brain dead patients. J Neurol Sci. 1998;160(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  66. Blanco P, Abdo-Cuza A. Transcranial Doppler ultrasound in neurocritical care. J Ultrasound. 2018:1–6.

    Google Scholar 

  67. Kuo JR, Chen CF, Chio CC, Chang CH, Wang CC, Yang CM, et al. Time dependent validity in the diagnosis of brain death using transcranial Doppler sonography. J Neurol Neurosurg Psychiatry. 2006;77(5):646–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baltgaile G. Cerebral circulatory arrest. In: Csiba L, Baracchini C, editors. Manual of neurosonology. Cambridge: Cambridge University Press; 2016. p. 23–33.

    Chapter  Google Scholar 

  69. Schreiber S. Cerebral circulatory arrest. In: Csiba L, Baracchini C, editors. Manual of neurosonology. Cambridge: Cambridge University Press; 2016. p. 262–8.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monisha A. Kumar .

Editor information

Editors and Affiliations

Appendices

Algorithm 27.1 TCD/TCCS: Use of Posterior Circulation in Diagnosis of Acute Brain injury

figure a

ABCD Airway-breathing-circulation-disability, CBFV Blood flow velocity, MFV Mean flow velocity, VA Vertebral artery, BA Basilar artery, PI Pulsatility index, PCA Posterior cerebral artery

Algorithm 27.2 Monitoring disease states with posterior circulation TCD/TCCS

figure b

ABCD Airway-breathing-circulation-disability, CBFV cerebral Blood flow velocity, PI Pulsatility index, PSV Peak systolic velocity, EDV End-diastolic velocity, MES microemboli signal, BA Basilar artery, VA vertebral artery, ABP arterial blood pressure, ICP intracranial pressure, CPP cerebral perfusion pressure, CMD cerebral micro-dialysis, CA cerebral autoregulation, VMR vasomotor reactivity, CBF cerebral blood flow

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gill, R.R., Cucchiara, B.L., Kumar, M.A. (2022). Acute Neurologic Injury in the ICU: Role of Transcranial Doppler in Disorders of the Vertebrobasilar Circulation. In: Rodríguez, C.N., et al. Neurosonology in Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-81419-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81419-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81418-2

  • Online ISBN: 978-3-030-81419-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics