Skip to main content

Neuro-ICU: Cerebral Hemodynamics and Transcranial Doppler (TCD/TCCS) Waveform Interpretation in the Most Common Neurocritical Pathologies

  • Chapter
  • First Online:
Neurosonology in Critical Care

Abstract

In this chapter, we will discuss the utility of transcranial Doppler to assess cerebral hemodynamics and how to apply it to understand the cerebral blood flow changes in acute brain injury. First, we will start by reviewing important cerebral hemodynamics principles such as cerebrovascular resistance, adequate cerebral blood flow, and cerebral autoregulation. We will finalize this chapter by assessing the interpretation of transcranial Doppler in aneurysmal subarachnoid hemorrhage, intracranial hypertension, and impending brain death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpers BJ, Berry RG, Paddison RM. Anatomical studies of the circle of Willis in normal brain. AMA Arch Neurol Psychiatry. 1959;81(4):409–18.

    Article  CAS  PubMed  Google Scholar 

  2. Lehrer HZ. Relative calibre of the cervical internal carotid artery. Normal variation with the circle of Willis. Brain. 1968;91(2):339–48.

    Article  CAS  PubMed  Google Scholar 

  3. Sorteberg W, Lindegaard KF, Rootwelt K, Dahl A, Russell D, Nyberg-Hansen R, et al. Blood velocity and regional blood flow in defined cerebral artery systems. Acta Neurochir. 1989;97(1–2):47–52.

    Article  CAS  PubMed  Google Scholar 

  4. Knowlton FP, Starling EH. The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J Physiol. 1912;44(3):206–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Griffiths DJ. Steady fluid flow through veins and collapsible tubes. Med Biol Eng. 1971;9(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  6. Skalak R, Keller SR, Secomb TW. Mechanics of blood flow. J Biomech Eng. 1981;103(2):102–15.

    Article  CAS  PubMed  Google Scholar 

  7. Brower RW, Noordergraaf A. Pressure-flow characteristics of collapsible tubes: a reconciliation of seemingly contradictory results. Ann Biomed Eng. 1973;1(3):333–55.

    Article  CAS  PubMed  Google Scholar 

  8. Stromberg DD, Fox JR. Pressures in the pial arterial microcirculation of the cat during changes in systemic arterial blood pressure. Circ Res. 1972;31(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  9. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7. discussion 7–9

    Article  CAS  PubMed  Google Scholar 

  10. Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology. 2017;126(6):1187–99.

    Article  PubMed  Google Scholar 

  11. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39(2):183–238.

    Article  CAS  PubMed  Google Scholar 

  12. Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab. 2013;33(3):449–56.

    Article  PubMed  Google Scholar 

  13. Fog M. Autoregulation of cerebral blood flow and its abolition by local hypoxia and-or trauma. Scand J Clin Lab Invest Suppl. 1968;102:V:B.

    Google Scholar 

  14. Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984;15(3):413–6.

    Article  CAS  PubMed  Google Scholar 

  15. Halpern W, Osol G. Influence of transmural pressure of myogenic responses of isolated cerebral arteries of the rat. Ann Biomed Eng. 1985;13(3–4):287–93.

    Article  CAS  PubMed  Google Scholar 

  16. Symon L, Held K, Dorsch NW. A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke. 1973;4(2):139–47.

    Article  CAS  PubMed  Google Scholar 

  17. Winn HR, Rubio R, Berne RM. Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res. 1979;45(4):486–92.

    Article  CAS  PubMed  Google Scholar 

  18. Winn HR, Bryner C, Curnish RR, Rubio R, Berne RM. Changes in brain metabolites during the first 60 seconds of ischemia: adenosine production during hypotension. Trans Am Neurol Assoc. 1978;103:59–61.

    CAS  PubMed  Google Scholar 

  19. Reneman RS, Arts T. Dynamic capacitance of epicardial coronary arteries in vivo. J Biomech Eng. 1985;107(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  20. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32(5):737–41. discussion 41–2

    Article  CAS  PubMed  Google Scholar 

  21. Linfante I, Delgado-Mederos R, Andreone V, Gounis M, Hendricks L, Wakhloo AK. Angiographic and hemodynamic effect of high concentration of intra-arterial nicardipine in cerebral vasospasm. Neurosurgery. 2008;63(6):1080–6. discussion 6–7

    Article  PubMed  Google Scholar 

  22. Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18(6):1025–30.

    Article  CAS  PubMed  Google Scholar 

  23. Ringelstein EB, Van Eyck S, Mertens I. Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of CO2 to acetazolamide. J Cerebral Blood Flow Metab. 1992;12(1):162–8.

    Article  CAS  Google Scholar 

  24. Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol. 2000;21(7):1207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Markus HS, Harrison MJ. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke. 1992;23(5):668–73.

    Article  CAS  PubMed  Google Scholar 

  26. Markwalder TM, Grolimund P, Seiler RW, Roth F, Aaslid R. Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure--a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab. 1984;4(3):368–72.

    Article  CAS  PubMed  Google Scholar 

  27. Bernoulli D. Hydrodynamica, sive de viribus et motibus fluidorum commentarii: opus academicum ab auctore, dum Petropoli ageret, congestum 1738.

    Google Scholar 

  28. Spencer MP, Reid JM. Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke. 1979;10(3):326–30.

    Article  CAS  PubMed  Google Scholar 

  29. Spencer MP, Whisler D. Transorbital Doppler diagnosis of intracranial arterial stenosis. Stroke. 1986;17(5):916–21.

    Article  CAS  PubMed  Google Scholar 

  30. Lindegaard KF, Bakke SJ, Aaslid R, Nornes H. Doppler diagnosis of intracranial artery occlusive disorders. J Neurol Neurosurg Psychiatry. 1986;49(5):510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schneider PA, Rossman ME, Bernstein EF, Torem S, Ringelstein EB, Otis SM. Effect of internal carotid artery occlusion on intracranial hemodynamics. Transcranial Doppler evaluation and clinical correlation. Stroke. 1988;19(5):589–93.

    Article  CAS  PubMed  Google Scholar 

  32. Koppl T, Schneider M, Pohl U, Wohlmuth B. The influence of an unilateral carotid artery stenosis on brain oxygenation. Med Eng Phys. 2014;36(7):905–14.

    Article  CAS  PubMed  Google Scholar 

  33. Telman G, Kouperberg E, Nitecki S, Karram T, Schwarz HA, Sprecher E, et al. Cerebral hemodynamics in symptomatic and asymptomatic patients with severe unilateral carotid stenosis before and after carotid endarterectomy. Eur J Vasc Endovasc Surg. 2006;32(4):375–8.

    Article  CAS  PubMed  Google Scholar 

  34. Lindegaard KF, Bakke SJ, Grolimund P, Aaslid R, Huber P, Nornes H. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J Neurosurg. 1985;63(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  35. Calligaro KD, Dougherty MJ. Correlation of carotid artery stump pressure and neurologic changes during 474 carotid endarterectomies performed in awake patients. J Vasc Surg. 2005;42(4):684–9.

    Article  PubMed  Google Scholar 

  36. Nornes H. The role of the circle of Willis in graded occlusion of the internal carotid artery in man. Acta Neurochir. 1973;28(3):165–77.

    Article  CAS  PubMed  Google Scholar 

  37. Nornes H. Hemodynamic aspects in the management of carotid-cavernous fistula. J Neurosurg. 1972;37(6):687–94.

    Article  CAS  PubMed  Google Scholar 

  38. Nornes H. Internal carotid artery blood flow during cerebral angiography. Neuroradiology. 1977;12(4):219–25.

    Article  CAS  PubMed  Google Scholar 

  39. Nornes H, Grip A, Wikeby P. Intraoperative evaluation of cerebral hemodynamics using directional Doppler technique. Part 1: arteriovenous malformations. J Neurosurg. 1979;50(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  40. Nornes H, Grip A, Wikeby P. Intraoperative evaluation of cerebral hemodynamics using directional Doppler technique. Part 2: saccular aneurysms. J Neurosurg. 1979;50(5):570–7.

    Article  CAS  PubMed  Google Scholar 

  41. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.

    Article  CAS  PubMed  Google Scholar 

  42. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 37: 483-526 (1899). J Mol Cell Cardiol. 1990;22(3):253–4.

    Article  CAS  PubMed  Google Scholar 

  43. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47(2):131–41.

    Article  PubMed  Google Scholar 

  44. Frank O. The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. J Mol Cell Cardiol. 1990;22(3):255–77.

    Article  CAS  PubMed  Google Scholar 

  45. Gosling RG, Dunbar G, King DH, Newman DL, Side CD, Woodcock JP, et al. The quantitative analysis of occlusive peripheral arterial disease by a non-intrusive ultrasonic technique. Angiology. 1971;22(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  46. Greenfield JC Jr, Tindall GT. Effect of acute increase in intracranial pressure on blood flow in thw internal carotid artery of man. J Clin Invest. 1965;44:1343–51.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Panerai RB. Assessment of cerebral pressure autoregulation in humans--a review of measurement methods. Physiol Meas. 1998;19(3):305–38.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Phys. 1998;274(1 Pt 2):H233–41.

    CAS  Google Scholar 

  49. Panerai RB, Coughtrey H, Rennie JM, Evans DH. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation. Physiol Meas. 1993;14(4):411–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dahl A, Lindegaard KF, Russell D, Nyberg-Hansen R, Rootwelt K, Sorteberg W, et al. A comparison of transcranial Doppler and cerebral blood flow studies to assess cerebral vasoreactivity. Stroke. 1992;23(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  51. Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K, Bakke SJ. Cerebral vasoreactivity in unilateral carotid artery disease. A comparison of blood flow velocity and regional cerebral blood flow measurements. Stroke. 1994;25(3):621–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM. Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol. 1990;16(8):745–61.

    Article  CAS  PubMed  Google Scholar 

  53. Lohmann H, Ringelstein EB, Knecht S. Functional transcranial Doppler sonography. Front Neurol Neurosci. 2006;21:251–60.

    Article  PubMed  Google Scholar 

  54. Miao J, Benkeser PJ, Nichols FT. A computer-based statistical pattern recognition for Doppler spectral waveforms of intracranial blood flow. Comput Biol Med. 1996;26(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  55. Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974;67(6 Pt 1):447–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nicoletto HA, Burkman MH. Transcranial Doppler series part III: interpretation. Am J Electroneurodiagnostic Technol. 2009;49(3):244–59.

    Article  PubMed  Google Scholar 

  57. Kidwell CS, el-Saden S, Livshits Z, Martin NA, Glenn TC, Saver JL. Transcranial Doppler pulsatility indices as a measure of diffuse small-vessel disease. J Neuroimag. 2001;11(3):229–35.

    Article  CAS  Google Scholar 

  58. Michel E, Zernikow B. Gosling's Doppler pulsatility index revisited. Ultrasound Med Biol. 1998;24(4):597–9.

    Article  CAS  PubMed  Google Scholar 

  59. Zweifel C, Czosnyka M, Carrera E, de Riva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery. 2012;71(4):853–61.

    Article  PubMed  Google Scholar 

  60. Ursino M, Giulioni M, Lodi CA. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study. J Neurosurg. 1998;89(2):255–66.

    Article  CAS  PubMed  Google Scholar 

  61. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl. 1988;42:81–4.

    CAS  PubMed  Google Scholar 

  62. Schwartz A, Hennerici M. Noninvasive transcranial Doppler ultrasound in intracranial angiomas. Neurology. 1986;36(5):626–35.

    Article  CAS  PubMed  Google Scholar 

  63. Hennerici M, Rautenberg W, Sitzer G, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity–Part 1. Examination technique and normal values. Surg Neurol. 1987;27(5):439–48.

    Article  CAS  PubMed  Google Scholar 

  64. Hennerici M, Rautenberg W, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity–Part 2. Evaluation of intracranial arterial disease. Surg Neurol. 1987;27(6):523–32.

    Article  CAS  PubMed  Google Scholar 

  65. Arnolds BJ, von Reutern GM. Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol. 1986;12(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  66. Martin PJ, Evans DH, Naylor AR. Transcranial color-coded sonography of the basal cerebral circulation. Reference data from 115 volunteers. Stroke. 1994;25(2):390–6.

    Article  CAS  PubMed  Google Scholar 

  67. Rasulo FA, De Peri E, Lavinio A. Transcranial Doppler ultrasonography in intensive care. Eur J Anaesthesiol Suppl. 2008;42:167–73.

    Article  CAS  PubMed  Google Scholar 

  68. Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth. 2004;93(5):710–24.

    Article  CAS  PubMed  Google Scholar 

  69. Maeda H, Matsumoto M, Handa N, Hougaku H, Ogawa S, Itoh T, et al. Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method. Stroke. 1993;24(5):670–5.

    Article  CAS  PubMed  Google Scholar 

  70. Homburg AM, Jakobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand. 1993;87(6):488–93.

    Article  CAS  PubMed  Google Scholar 

  71. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51; discussion.

    Google Scholar 

  72. Cardim D, Schmidt B, Robba C, Donnelly J, Puppo C, Czosnyka M, et al. Transcranial Doppler monitoring of intracranial pressure plateau waves. Neurocrit Care. 2017;26(3):330–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LucĂ­a Rivera Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mejia, L.L.P., Ergin, B.B., Rivera Lara, L. (2022). Neuro-ICU: Cerebral Hemodynamics and Transcranial Doppler (TCD/TCCS) Waveform Interpretation in the Most Common Neurocritical Pathologies. In: RodrĂ­guez, C.N., et al. Neurosonology in Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-81419-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81419-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81418-2

  • Online ISBN: 978-3-030-81419-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics