Skip to main content

Isoflavones

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Isoflavones, phenolic compounds with a 3-phenylchromen-4-one backbone, are plant-derived metabolites found primarily in the Fabaceae family. Hundreds of isoflavone structures have been identified so far. Regarding human nutrition, the most important of these are soybean isoflavones including daidzein, genistein, and glycitein. After ingestion, isoflavones are deglycosylated, demethylated, oxidized (or reduced), glucuronidated, or sulfated by enterocytes, liver cells, and intestinal microorganisms. Among the metabolites, daidzein metabolite equol has the greatest impact on human health. Due to their similarity to estrogens, equol and genistein, and to a lesser extent other isoflavones, exert estrogenic or antiestrogenic effects in mammals, leading to antimenopausal, cardioprotective, antiosteoporotic, and in the case of estrogen-related cancers, anticarcinogenic effects. Apart from these hormone-related activities, isoflavones possess antioxidant properties and influence several other biological processes. However, the health effects of food-derived isoflavones are dependent on the food matrices and also on the ability of intestinal microflora to produce equol. For the individuals who cannot produce equol, the consumption of milk is an alternative, as significant amounts of this metabolite are excreted into milk in cows fed feedstuffs rich in isoflavones. Thus, targeted cattle nutrition could result in the production of milk that can be considered a functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida M, Laurent MR, Dubois V. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97:135–87.

    Article  Google Scholar 

  • Andres S, Hansen U, Niemann B, et al. Determination of the isoflavone composition and estrogenic activity of commercial dietary supplements based on soy or red clover. Food Funct. 2015;6(6):2017–25.

    Article  CAS  Google Scholar 

  • Applegate CC, Rowles JL, Ranard KM, et al. Soy consumption and the risk of prostate cancer: an updated systematic review and meta-analysis. Nutrients. 2018;10:40.

    Article  Google Scholar 

  • Bahamonde M, Misra M. Potential applications for rhIGF-I: bone disease and IGFI. Growth Hormon IGF Res. 2020;52:101317.

    Article  CAS  Google Scholar 

  • Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods. 2008. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/isoflav/Isoflav_R2.pdf. Accessed 20 Oct 2021.

  • Bloedon LAT, Jeffcoat AR, Lopaczynski W, et al. Safety and pharmacokinetics of purified soy isoflavones: single dose administration to postmenopausal women. Am J Clin Nutr. 2002;76:1126–37.

    Article  CAS  Google Scholar 

  • Bohn T, Blackwood M, Francis D, et al. Bioavailability of phytochemical constituents from a novel soy fortified lycopene rich tomato juice developed for targeted cancer prevention trials. Nutr Cancer. 2013;65(6):919–29. https://doi.org/10.1080/01635581.2011.630156.

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL, editors. Biochemistry & molecular biology of plants. 2nd ed. Hoboken: Wiley; 2015.

    Google Scholar 

  • Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357:905–16.

    Article  CAS  Google Scholar 

  • Cano A, García-Pérez MÁ, Tarín JJ. Isoflavones and cardiovascular disease. Maturitas. 2010;67(3):219–26.

    Article  CAS  Google Scholar 

  • Chen MN, Lin CC, Liu CF. Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric. 2015;18(2):260–9. https://doi.org/10.3109/13697137.2014.966241.

    Article  CAS  Google Scholar 

  • Choi M-S, Rhee KC. Production and processing of soybeans and nutrition and safety of isoflavone and other soy products for human health. J Med Food. 2006;9(1):1–10. https://doi.org/10.1089/jmf.2006.9.1.

    Article  CAS  Google Scholar 

  • Conrad SC, Chiu H, Silverman BL. Soy formula complicates management of congenital hypothyroidism. Arch Dis Child. 2004;89:37–40.

    Article  CAS  Google Scholar 

  • Das D, Sarkar S, Wann SB, et al. Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res Int. 2022;152:110922. https://doi.org/10.1016/j.foodres.2021.110922.

    Article  CAS  Google Scholar 

  • Domínguez-López I, Yago-Aragón M, Salas-Huetos A, et al. Effects of dietary phytoestrogens on hormones throughout a human lifespan: a review. Nutrients. 2020;12(8):2456.

    Article  Google Scholar 

  • Dong HL, Tang XY, Deng YY, et al. Urinary equol, but not daidzein and genistein, was inversely associated with the risk of type 2 diabetes in Chinese adults. Eur J Nutr. 2020;59(2):719–28.

    Article  CAS  Google Scholar 

  • EFSA ANS Panel. Scientific opinion on the risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J. 2015;13(10):4246.

    Article  Google Scholar 

  • Flachowsky G, Hünerberg M, Meyer U, et al. Isoflavone concentration of soybean meal from various origins and transfer of isoflavones into milk of dairy cows. J Verbrauch Lebensm. 2011;6:449–56.

    Article  CAS  Google Scholar 

  • Franke AA, Halm BM, Custer LJ, et al. Isoflavones in breastfed infants after mothers consume soy. Am J Clin Nutr. 2006;84:406–13.

    Article  CAS  Google Scholar 

  • Frankenfeld CL. O-desmethylangolensin: the importance of equol’s lesser known cousin to human health. Adv Nutr. 2011;2:317–24.

    Article  CAS  Google Scholar 

  • Hameed ASS, Rawat PS, Meng X, et al. Biotransformation of dietary phytoestrogens by gut microbes: a review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotech Adv. 2020;43:107576.

    Article  Google Scholar 

  • Hampl R, Ostatnikova D, Celec P, et al. Short-term effect of soy consumption on thyroid hormone levels and correlation with phytoestrogen level in healthy subjects. Endocr Regul. 2008;42:53–61.

    CAS  Google Scholar 

  • Henchion M, Moloney AP, Hyland J, et al. Review: trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal Suppl. 2021;1:100287. https://doi.org/10.1016/j.animal.2021.100287.

    Article  CAS  Google Scholar 

  • Hu B, Liu X, Zhang C, et al. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J Food Drug Anal. 2017;25(1):3–15. https://doi.org/10.1016/j.jfda.2016.11.004.

    Article  CAS  Google Scholar 

  • Islam MA, Bekele R, Vanden Berg JHJ, et al. Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicol In Vitro. 2015;29:706–15.

    Article  CAS  Google Scholar 

  • Jungbauer A, Medjakovic S. Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol. 2014;139:277–89.

    Article  CAS  Google Scholar 

  • Kašparovská J, Pečínková M, Dadáková K, et al. Effects of isoflavone-enriched feed on the rumen microbiota in dairy cows. PLoS One. 2016;11(4):e0154642.

    Article  Google Scholar 

  • Kašparovská J, Dadáková K, Lochman J, et al. Changes in equol and major soybean isoflavone contents during processing and storage of yogurts made from control or isoflavone-enriched bovine milk determined using LC–MS (TOF) analysis. Food Chem. 2017;222:67–73. https://doi.org/10.1016/j.foodchem.2016.12.010.

    Article  CAS  Google Scholar 

  • Kaur H, Mishra HN, Kumar P. Textural properties of mango soy fortified probiotic yoghurt: optimisation of inoculum level of yoghurt and probiotic culture. Int J Food Sci. 2009;44(2):415–24. https://doi.org/10.1111/j.1365-2621.2008.01789.x.

    Article  CAS  Google Scholar 

  • Kaur J, Kaur A, Singh J. Nutritional evaluation and utilisation of composite whole flours for making functional cookies rich in β-glucan and isoflavones. Br Food J. 2017;119(4):909–20.

    Article  Google Scholar 

  • Kim MJ, Lee J. Modification of isoflavones by processing and photosensitization in model and food systems. J Korean Soc Appl Biol Chem. 2011;54(6):833–40. https://doi.org/10.3839/jksabc.2011.128.

    Article  CAS  Google Scholar 

  • Ko K-P. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev. 2014;15(17):7001–10.

    Article  Google Scholar 

  • Křížová L, Veselý A, Třináctý J, et al. Changes in isoflavones concentrations in cheese during processing and ripening. Acta Univ Agric Silvic Mendel Brun. 2011;59(1):153–62.

    Article  Google Scholar 

  • Křížová L, Dadáková K, Kašparovská J, et al. Isoflavones. Molecules. 2019;24(6):1076.

    Article  Google Scholar 

  • Křížová L, Křešt’áková V, Dadáková K, et al. Production of bovine equol-enriched milk: a review. Animals. 2021;11:735.

    Article  Google Scholar 

  • Kuhnle GGC, Dell’Aquila C, Aspinall SM, et al. Phytoestrogen content of foods of animal origin: dairy products, eggs, meat, fish, and seafood. J Agric Food Chem. 2008;56(21):10099–104.

    Article  CAS  Google Scholar 

  • Lambert MNT, Hu LM, Jeppesen PB. A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri- and postmenopausal women. Am J Clin Nutr. 2017;106:801–11.

    CAS  Google Scholar 

  • Liu Y, Zhou Y, Nirasawa S, et al. In vivo anti-fatigue activity of sufu with fortification of isoflavones. Pharmacogn Mag. 2014;10(39):367–73. https://doi.org/10.4103/0973-1296.137380.

    Article  CAS  Google Scholar 

  • Liu L, Chen X, Hao L et al. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit Rev Food Sci Nutr. 2020;6. https://doi.org/10.1080/10408398.2020.1848792.

  • Liu Q, Sun S, Cheng J, et al. Development of whey protein nanoparticles as carriers to deliver soy isoflavones. LWT. 2022;155:112953. https://doi.org/10.1016/j.lwt.2021.112953.

    Article  CAS  Google Scholar 

  • Martirosyan DM, Singh JA. New definition of functional food by FFC: what makes a new definition unique? Funct Food Health Dis. 2015;5:209–23.

    Article  Google Scholar 

  • Mayo B, Vázquez L, Flórez AB. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019;11(9):2231.

    Article  CAS  Google Scholar 

  • Mazumder MAR, Ranganathan TV. Encapsulation of isoflavone with milk, maltodextrin and gum acacia improves its stability. Curr Res Food Sci. 2020;2:77–83. https://doi.org/10.1016/j.crfs.2019.12.003.

    Article  CAS  Google Scholar 

  • Milerová J, Čeřovská J, Zamrazil V, et al. Actual levels of soy phytoestrogens in children correlate with thyroid laboratory parameters. Clin Chem Lab Med. 2006;44:171–4.

    Article  Google Scholar 

  • Molina L, Bustamante FA, Bhoola KD, et al. Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin Sci. 2018;132(24):2583–98.

    Article  CAS  Google Scholar 

  • Monteleone P, Mascagni G, Giannini A, et al. Symptoms of menopause–global prevalence, physiology and implications. Nat Rev Endocrinol. 2018;14(4):199–215.

    Article  Google Scholar 

  • Munro IC, Harwood M, Hlywka JJ, et al. Soy isoflavones: a safety review. Nutr Rev. 2003;61(1):33. https://doi.org/10.1301/nr.2003.janr.1-33.

    Article  Google Scholar 

  • Nielsen TS, Nørgaard JV, Purup S, et al. Estrogenic activity of bovine milk high or low in equol using immature mouse uterotrophic responses and an estrogen receptor transactivation assay. Cancer Epidemiol. 2009;33(1):61–8.

    Article  CAS  Google Scholar 

  • Nilsson B-O, Olde B, Leeb-Lundberg LF. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol. 2011;163:1131–9.

    Article  CAS  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.

    Article  CAS  Google Scholar 

  • Petersmann A, Müller-Wieland D, Müller UA, et al. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2019;127(S01):1–7.

    Google Scholar 

  • Petrine JC, del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: an overview. Phytother Res. 2021;35(1):180–97.

    Article  CAS  Google Scholar 

  • Rastogi S, Katara A, Pandey MM, et al. Physical stability and HPLC analysis of Indian kudzu (Pueraria tuberosa Linn.) fortified Milk. Evid Based Complement Alternat Med. 2013;368248. https://doi.org/10.1155/2013/368248.

  • Reynolds K, Chin A, Lees KA, et al. A meta-analysis of the effect of soy protein supplementation on serum lipids. Am J Cardiol. 2006;98:633–40.

    Article  CAS  Google Scholar 

  • Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017;174:1263–80. https://doi.org/10.1111/bph.13622.

    Article  CAS  Google Scholar 

  • Rüfer CE, Kulling SE. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem. 2006;54(8):2926–31.

    Article  Google Scholar 

  • Sathyapalan T, Rigby AS, Bhasin S, et al. Effect of soy in men with type 2 diabetes mellitus and subclinical hypogonadism: a randomized controlled study. J Clin Endocrinol Metab. 2017;102:425–33.

    Google Scholar 

  • Sekikawa A, Ihara M, Lopez O, et al. Effect of S-equol and soy isoflavones on heart and brain. Curr Cardiol Rev. 2019;15:114–35.

    Article  CAS  Google Scholar 

  • Setchell KD, Clerici C. Equol: pharmacokinetics and biological actions. J Nutr. 2010a;140(7):1363S–8S. https://doi.org/10.3945/jn.109.119784.

    Article  CAS  Google Scholar 

  • Setchell KD, Clerici C. Equol: history, chemistry, and formation. J Nutr. 2010b;140:1355S–62S.

    Article  CAS  Google Scholar 

  • Setchell KD, Cole SJ. Method of defining equol-producer status and its frequency among vegetarians. J Nutr. 2006;136(8):2188–93.

    Article  CAS  Google Scholar 

  • Setchell KD, Zhao X, Shoaf SE, et al. The pharmacokinetics of S-(-) equol administered as SE5-OH tablets to healthy postmenopausal women. J Nutr. 2009;139(11):2037–43.

    Article  CAS  Google Scholar 

  • Shu XO, Zheng Y, Cai H, et al. Soy food intake and breast cancer survival. JAMA. 2009;302:2437–43.

    Article  Google Scholar 

  • Smith DA, Banks SW. Biosynthesis, elicitation and biological activity of isoflavonoid phytoalexins. Phytochemistry. 1986;25(5):979–95.

    Article  CAS  Google Scholar 

  • Sohn SI, Pandian S, Oh YJ, et al. Metabolic engineering of isoflavones: an updated overview. Front Plant Sci. 2021;12:670103.

    Article  Google Scholar 

  • Soni M, Rahardjo TB, Soekardi R, et al. Phytoestrogens and cognitive function: a review. Maturitas. 2014;77:209–20.

    Article  CAS  Google Scholar 

  • Sosvorová L, Mikšátková P, Bičíková M, et al. The presence of monoiodinated derivates of daidzein and genistein in human urine and its effect on thyroid gland function. Food Chem Toxicol. 2012;50:2774–9.

    Article  Google Scholar 

  • Szeja W, Grynkiewicz G, Rusin A. Isoflavones, their glycosides and glycoconjugates. Synthesis and biological activity. Curr Org Chem. 2016;21(3):218–35.

    Article  Google Scholar 

  • Usui T, Tochiya M, Sasaki Y, et al. Effects of natural S-equol supplements on overweight or obesity and metabolic syndrome in the Japanese, based on sex and equol status. Clin Endocrinol. 2012;78:365–72.

    Article  Google Scholar 

  • Villares A, Rostagno MA, García-Lafuente A, et al. Content and profile of isoflavones in soy-based foods as a function of the production process. Food Bioprocess Technol. 2011;4:27–38. https://doi.org/10.1007/s11947-009-0311-y.

    Article  CAS  Google Scholar 

  • Weng L, Zhang F, Wang R, et al. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem Biol Interact. 2019;310:108665. https://doi.org/10.1016/j.cbi.2019.05.031.

    Article  CAS  Google Scholar 

  • Wyspianska D, Kucharska AZ, Sokol-Letowska A, et al. Effect of microencapsulation on concentration of isoflavones during simulated in vitro digestion of isotonic drink. Food Sci Nutr. 2019;7(2):805–16. https://doi.org/10.1002/fsn3.929.

    Article  CAS  Google Scholar 

  • Yoshikata R, Myint KZY, Ohta H. Effects of equol supplement on bone and cardiovascular parameters in middle-aged Japanese women: a prospective observational study. J Altern Complement Med. 2018;24:701–8.

    Article  Google Scholar 

  • Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health. Crit Rev Food Sci Nutr. 2017;57(6):1280–93. https://doi.org/10.1080/10408398.2014.989958.

    Article  CAS  Google Scholar 

  • Zárate S, Stevnsner T, Gredilla R. Role of estrogen and other sex hormones in brain aging. Neuroprotection and DNA repair. Front Aging Neurosci. 2017;9:430.

    Article  Google Scholar 

  • Zhang X, Chen X, Xu Y, et al. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses in humans. Nutr Metab (Lond). 2021;18:7.

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was supported by the University of Veterinary Sciences, Internal Grant Agency, grant number 206/2017/FVHE, and by the Grant Agency of Masaryk University: Support for biochemical research in 2021, grant number MUNI/A/1604/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Křížová .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Křížová, L., Dadáková, K., Farková, V. (2022). Isoflavones. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics