Skip to main content

Trace Minerals

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Trace minerals are required in tiny amounts (less than 20 mg). They are divided into nutritionally essential, may be essential, and nonessential minerals. Essential trace minerals include iron, zinc, copper, selenium, iodine, chromium, fluoride, manganese, and molybdenum. Nonessential minerals are aluminum, cadmium, mercury, arsenic, and lead. Essential trace minerals play a crucial role in various biological functions, such as growth and development, fertility, antioxidant systems, and energy and nutrient metabolism. These activities are mainly due to their contributory role in metalloenzymes as cofactors. Trace elements from the soil enter the food chain through microorganisms and plants. Indeed, microorganisms are needed to transform some elements to the bioavailable forms. In addition, water is another source of trace minerals. Among them, iron, zinc, and copper have been in the center of attention owing to their role in a wide range of enzymatic activities. Accordingly, they are used in the production of various foods with functional properties. However, since their absorption is affected by several factors, their deficiency is frequent. On the other side, all trace minerals can cause toxicity when consumed in high amounts for a long period of time or in persons with some genetic disorders. Therefore, it is necessary to take approaches to deal with both trace mineral deficiency and toxicity in individuals and societies. This chapter focuses on the metabolism, function, health outcomes caused by the deficiency and toxicity of trace minerals, and their role in functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adadi P, Barakova NV, Muravyov KY, Krivoshapkina EF. Designing selenium functional foods and beverages: a review. Food Res Int. 2019;120:708–25.

    Article  CAS  Google Scholar 

  • Akin O, Temelli F, Köseoğlu S. Membrane applications in functional foods and nutraceuticals. Crit Rev Food Sci Nutr. 2012;52(4):347–71.

    Article  CAS  Google Scholar 

  • Altarelli M, Ben-Hamouda N, Schneider A, Berger MM. Copper deficiency: causes, manifestations, and treatment. Nutr Clin Pract. 2019;34(4):504–13.

    Article  CAS  Google Scholar 

  • Arias-Borrego A, Callejón-Leblic B, Calatayud M, Gómez-Ariza JL, Collado MC, García-Barrera TJErop. Insights into cancer and neurodegenerative diseases through selenoproteins and the connection with gut microbiota–current analytical methodologies. 2019;16(10):805–14.

    Google Scholar 

  • Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Aspects Med. 2005;26(4–5):353–62.

    Article  CAS  Google Scholar 

  • Assmann G, Buono P, Daniele A, Della Valle E, Farinaro E, Ferns G, et al. Functional foods and cardiometabolic diseases: International task force for prevention of cardiometabolic diseases. Nutr Metab Cardiovasc Dis. 2014;24(12):1272–300.

    Article  CAS  Google Scholar 

  • Ast DB. A program of treatment of public water supply to correct fluoride deficiency. 1943;35(9):1191–7.

    Google Scholar 

  • Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Met Ions Life Sci. 2013;13:199–227.

    Article  Google Scholar 

  • Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 2010;91(6):1634–41.

    Article  CAS  Google Scholar 

  • Bao B, Prasad AS, Beck FW, Bao GW, Singh T, Ali S, et al. Intracellular free zinc up-regulates IFN-γ and T-bet essential for Th1 differentiation in Con-A stimulated HUT-78 cells. Biochem Biophys Res Commun. 2011;407(4):703–7.

    Article  CAS  Google Scholar 

  • Belisle JJS. Organic fluorine in human serum: natural versus industrial sources 1981;212(4502):1509–10.

    Google Scholar 

  • Bisaglia M, Bubacco L. Copper ions and Parkinson’s disease: why is homeostasis so relevant? Biomol Ther. 2020;10(2):195.

    CAS  Google Scholar 

  • Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–15.

    Article  CAS  Google Scholar 

  • Bulcke F, Dringen R, Scheiber IF. Neurotoxicity of copper. In: Neurotoxicity of metals. 2017. p. 313–43.

    Google Scholar 

  • Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P. Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk. Nutrients 2020;12(7).

    Google Scholar 

  • Chachra D, Vieira AP, Grynpas MD. Fluoride and mineralized tissues. Crit Rev Biomed Eng. 2008;36(2–3):183.

    Article  Google Scholar 

  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. 2012;86(4):521–34.

    CAS  Google Scholar 

  • Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020;94(5):1443–60.

    Article  CAS  Google Scholar 

  • Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans. Front Biosci (Landmark edition). 2018;23:1655–79.

    Article  CAS  Google Scholar 

  • Costello R, Saldanha L, Dwyer J, Andrews K, Bailen R, Bailey R, et al., editors. NEW NATIONAL INSTITUTES OF HEALTH DIETARY SUPPLEMENT LABEL DATABASE CAN AID SEARCH FOR INGREDIENT INFORMATION. JOURNAL OF INVESTIGATIVE MEDICINE; 2015: LIPPINCOTT WILLIAMS & WILKINS TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA ….

    Google Scholar 

  • Das JK, Salam RA, Kumar R, Bhutta ZA. Micronutrient fortification of food and its impact on woman and child health: a systematic review. Syst Rev. 2013a;2:67.

    Article  Google Scholar 

  • Das JK, Kumar R, Salam RA, Bhutta ZA. Systematic review of zinc fortification trials. Ann Nutr Metab. 2013b;62(Suppl 1):44–56.

    Article  CAS  Google Scholar 

  • Degerud EM, Manger MS, Strand TA, Dierkes J. Bioavailability of iron, vitamin A, zinc, and folic acid when added to condiments and seasonings. Ann N Y Acad Sci. 2015;1357(1):29–42.

    Article  CAS  Google Scholar 

  • Doisy R, Streeten D, Freiberg J, Schneider A. Chromium metabolism in man and biochemical effects. 2013;2:79–104.

    Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for zinc. EFSA J 2014a;12(10):3844.

    Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for selenium. EFSA J 2014b;12(10):3846.

    Google Scholar 

  • Fazelian S, Rouhani MH, Bank SS, Amani R. Chromium supplementation and polycystic ovary syndrome: a systematic review and meta-analysis. 2017;42:92–6.

    Google Scholar 

  • Freitas EP, Cunha AT, Aquino SL, Pedrosa LF, Lima SC, Lima JG, et al. Zinc status biomarkers and cardiometabolic risk factors in metabolic syndrome: a case control study. Nutrients 2017;9(2).

    Google Scholar 

  • Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.

    Article  Google Scholar 

  • Gibson RS, Bailey KB, Gibbs M, Ferguson EL. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull. 2010;31(2 Suppl):S134–46.

    Article  Google Scholar 

  • Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y. Iron overload cardiomyopathy: better understanding of an increasing disorder. J Am Coll Cardiol. 2010;56(13):1001–12.

    Article  CAS  Google Scholar 

  • Gupta S, Brazier AKM, Lowe NM. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet. 2020;33(5):624–43.

    Article  CAS  Google Scholar 

  • Ha HY, Alfulaij N, Berry MJ, Seale LA. From selenium absorption to selenoprotein degradation. Biol Trace Elem Res. 2019;192(1):26–37.

    Article  CAS  Google Scholar 

  • Hannah-Shmouni F, MacNeil L, Potter M, Jobling R, Yoon G, Laughlin S, et al. Severe cystic degeneration and intractable seizures in a newborn with molybdenum cofactor deficiency type B. Mol Genet Metab Rep. 2019;18:11–3.

    Article  CAS  Google Scholar 

  • Herdt TH, Rumbeiha W, Braselton WE. The use of blood analyses to evaluate mineral status in livestock. Vet Clin North Am Food Anim Pract. 2000;16(3):423–44.

    Article  CAS  Google Scholar 

  • Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. 2015;35:71–108.

    Google Scholar 

  • Horowitz HS. Decision-making for national programs of community fluoride use. 2000;28(5):321–9.

    Google Scholar 

  • Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461s–7s.

    Article  CAS  Google Scholar 

  • Iglesias-Figueroa BF, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Rascón-Cruz Q. Lactoferrin as a nutraceutical protein from milk, an overview. Int Diary J. 2019;89:37–41.

    Article  CAS  Google Scholar 

  • King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2015;146(4):858s–85s.

    Article  Google Scholar 

  • Koo W, Tice H. Human milk fortifiers do not meet the current recommendation for nutrients in very low birth weight infants. JPEN J Parenter Enteral Nutr. 2018;42(4):813–20.

    CAS  Google Scholar 

  • Kroot JJC, Tjalsma H, Fleming RE, Swinkels DW. Hepcidin in human iron disorders: diagnostic implications. Clin Chem. 2011;57(12):1650–69.

    Google Scholar 

  • Lee SR. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxidative Med Cell Longev. 2018;2018:9156285.

    Article  Google Scholar 

  • Lien EL. Infant formulas with increased concentrations of α-lactalbumin. Am J Clin Nutr. 2003;77(6):1555S–8S.

    Article  CAS  Google Scholar 

  • Lin P-H, Sermersheim M, Li H, Lee PH, Steinberg SM, Ma JJN. Zinc in wound healing modulation. Nutrients. 2018;10(1):16.

    Article  Google Scholar 

  • Longman MJLE. Expert Group of Vitamins and Minerals. Safe upper levels for vitamins and minerals. Birmingham. 2003.

    Google Scholar 

  • Love A. Chromium – biological and analytical considerations. Chromium: metabolism and toxicity. Chapman and Hall/CRC; 2019. p. 1–12.

    Book  Google Scholar 

  • Lynch R, Ten Cate JM. The anti-caries efficacy of calcium carbonate-based fluoride toothpastes. Int Dent J. 2005;55:175–8.

    Article  CAS  Google Scholar 

  • Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of nutrition for development (BOND)-iron review. J Nutr. 2018;148(suppl_1):1001S–67S.

    Article  Google Scholar 

  • Martínez-Mier EA. Fluoride: its metabolism, toxicity, and role in dental health. 2012;17(1):28–32.

    Google Scholar 

  • Mehdi Y, Hornick J-L, Istasse L, Dufrasne IJM. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18(3):3292–311.

    Article  CAS  Google Scholar 

  • Melendez-Ramirez LY, Richards RJ, Cefalu WT. Complications of type 1 diabetes. Endocrinol Metab Clin N Am. 2010;39(3):625–40.

    Article  Google Scholar 

  • Miller EM. Iron status and reproduction in US women: National Health and Nutrition Examination Survey, 1999-2006. PLoS One. 2014;9(11):e112216.

    Article  Google Scholar 

  • Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B. Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol. 2014;306(5):C450–9.

    Article  CAS  Google Scholar 

  • Momcilović B. A case report of acute human molybdenum toxicity from a dietary molybdenum supplement–A new member of the “lucor metallicum” family. Arh Hig Rada Toksikol. 1999;50(3):289–97.

    Google Scholar 

  • Moran R, Davis M-G, Maletz A. Role of dietary nutrition, vitamins, nutrients, and supplements in cardiovascular health. Prevention and treatment of cardiovascular disease. Springer; 2021. p. 1–27.

    Book  Google Scholar 

  • Mudd AT, Alexander LS, Berding K, Waworuntu RV, Berg BM, Donovan SM, et al. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. 2016;4:4.

    Google Scholar 

  • Organization WH. Iodine deficiency in Europe: a continuing public health problem: World Health Organization; 2007.

    Google Scholar 

  • Ott G, Havemeyer A, Clement B. The mammalian molybdenum enzymes of mARC. J Biol Inorg Chem. 2015;20(2):265–75.

    Article  CAS  Google Scholar 

  • Pittler M, Stevinson C, Ernst E. Chromium picolinate for reducing body weight: meta-analysis of randomized trials. 2003;27(4):522–9.

    Google Scholar 

  • Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants (Basel, Switzerland) 2019;8(6).

    Google Scholar 

  • Prasad AS, Miale A Jr, Farid Z, Sandstead HH, Schulert AR. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med. 1963;61:537–49.

    CAS  Google Scholar 

  • Prasad AS, Fitzgerald JT, Hess JW, Kaplan J, Pelen F, Dardenne M. Zinc deficiency in elderly patients. Nutrition (Burbank, Los Angeles County, Calif). 1993;9(3):218–24.

    CAS  Google Scholar 

  • Pravst I. Functional foods in Europe: a focus on health claims. Nutrition Institute, Ljubljana, Slovenia. 2012. p. 165–208.

    Google Scholar 

  • Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: a glycoprotein involved in immunomodulation, anticancer, and antimicrobial processes. Molecules (Basel, Switzerland). 2021;26(1).

    Google Scholar 

  • Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr. 2008;100(2):254–68.

    Article  CAS  Google Scholar 

  • Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC, Smith AM. The effect of fluoride on the developing tooth. Caries Res. 2004;38(3):268–76.

    Article  CAS  Google Scholar 

  • Rohner F, Zimmermann M, Jooste P, Pandav C, Caldwell K, Raghavan R, et al. Biomarkers of nutrition for development – iodine review. J Nutr. 2014;144(8):1322s–42s.

    Article  CAS  Google Scholar 

  • Rosado JL. Zinc and copper: proposed fortification levels and recommended zinc compounds. J Nutr. 2003;133(9):2985s–9s.

    Article  Google Scholar 

  • Russell R, Beard JL, Cousins RJ, Dunn JT, Ferland G, Hambidge K, et al. Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press (US); 2001.

    Google Scholar 

  • Sanna A, Firinu D, Zavattari P, Valera P. Zinc status and autoimmunity: a systematic review and meta-analysis. Nutrients 2018;10(1):68.

    Google Scholar 

  • Schwarz G, Belaidi AA. Molybdenum in human health and disease. Met Ions Life Sci. 2013;13:415–50.

    Article  Google Scholar 

  • Seldén AI, Berg NP, Söderbergh A, Bergström BEO. Occupational molybdenum exposure and a gouty electrician. Occup Med (Lond). 2005;55(2):145–8.

    Article  Google Scholar 

  • Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. Biochim Biophys Acta. 2012;1820(3):161–87.

    Article  CAS  Google Scholar 

  • Shils ME, Olson JA, Shike M. Modern nutrition in health and disease. 1994.

    Google Scholar 

  • Shils M, Shike M, Ross A. Modern nutrition in health and disease. Lippincott Williams & Wilkins, Baltimore;2005. p. 2146.

    Google Scholar 

  • Singh H. Nanotechnology applications in functional foods; opportunities and challenges. Preventive Nutr Food Sci. 2016;21(1):1–8.

    Article  CAS  Google Scholar 

  • Skalnaya MG, Skalny AV. Essential trace elements in human health: a physician’s view, vol. 224; 2018.

    Google Scholar 

  • Solomon EI, Decker A, Lehnert N. Non-heme iron enzymes: contrasts to heme catalysis. 2003;100(7):3589–94.

    Google Scholar 

  • Štepec D, Ponikvar-Svet M. Fluoride in human health and nutrition. Acta Chim Slov. 2019;66(2):255–75.

    Article  Google Scholar 

  • Stout M, Nyska A, Collins B, Witt K, Kissling G, Malarkey D, et al. Chronic toxicity and carcinogenicity studies of chromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1 mice for 2 years. 2009;47(4):729–33.

    Google Scholar 

  • Suksomboon N, Poolsup N, Yuwanakorn A. Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J Clin Pharm Ther. 2014;39(3):292–306.

    Article  CAS  Google Scholar 

  • Thompson RJ, McMullen TB, Morgan GB. Fluoride concentrations in the ambient air. 1971;21(8):484–7.

    Google Scholar 

  • Tomita M, Wakabayashi H, Yamauchi K, Teraguchi S, Hayasawa HJB, Biology C. Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem Cell Biol. 2002;80(1):109–12.

    Article  CAS  Google Scholar 

  • Turnlund JR, Keyes WR, Peiffer GL. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men at five intakes of dietary molybdenum. Am J Clin Nutr. 1995;62(4):790–6.

    Article  CAS  Google Scholar 

  • Van Den Berghe PV, Klomp LW. New developments in the regulation of intestinal copper absorption. 2009;67(11):658–72.

    Google Scholar 

  • Vincent JBJP. The bioinorganic chemistry of chromium (III). 2001;20(1–2):1–26.

    Google Scholar 

  • Vincent JB. Is the pharmacological mode of action of chromium (III) as a second messenger? 2015;166(1):7–12.

    Google Scholar 

  • Wang BJ. Molecular determinants of milk lactoferrin as a bioactive compound in early neurodevelopment and cognition. J Pediatr. 2016;173:S29–36.

    Article  CAS  Google Scholar 

  • Wang J, Krizowski S, Fischer-Schrader K, Niks D, Tejero J, Sparacino-Watkins C, et al. Sulfite oxidase catalyzes single-electron transfer at molybdenum domain to reduce nitrite to nitric oxide. Antioxid Redox Signal. 2015;23(4):283–94.

    Article  CAS  Google Scholar 

  • Whitford GM. Acute and chronic fluoride toxicity. J Dent Res. 1992;71(5):1249–54.

    Article  CAS  Google Scholar 

  • Whitford GM. Intake and metabolism of fluoride. 1994;8(1):5–14.

    Google Scholar 

  • WHO. Environmental health criteria 36: fluorine and fluorides. Geneva: World Health Organization; 1984.

    Google Scholar 

  • Zimmermann MB. Iodine and the iodine deficiency disorders. Present knowledge in nutrition. Elsevier; 2020. p. 429–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haghighatdoost, F., Mohammadifard, N., Sarrafzadegan, N. (2022). Trace Minerals. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics