Skip to main content

Procyanidins

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Due to their high antioxidant properties, phenolic substances are known as protective phytochemicals with health-promoting properties against some diseases and disorders caused by oxidative stress in the human body. These compounds are isolated from various plant sources by miscellaneous methods. Phenolics, which have the greatest diversity among the naturally derived compounds, have been studied to integrate their antioxidant properties into the human body through different food and biochemical applications for decades. Procyanidins are a class of polyphenols formed by the condensation of tannins and are the building blocks of the proanthocyanidin molecule. Procyanidins have been applied to scientific research concerning their therapeutic effects in the presence of high antioxidant properties. The application of procyanidins, extracted from the pulp and skin of many dark-colored berry fruits, especially red grapes, cocoa, and their seeds, in food, biochemistry, cosmetics, and textile fields, has been also researched in recent years. The main goal of this chapter is to review the structural properties, subgroups, classification, major sources, and bioaccessibility of the procyanidins phytochemicals. The second goal is to investigate the purification procedures of the procyanidin molecule from different sources by appropriate extraction methods following the encapsulation of the purified form with different methods. Various food and packaging applications of procyanidins in free or encapsulated form are also discussed by several research studies in the chapter. Moreover, the chapter includes the information on the sufficiency of the use of procyanidins in the varied food matrix and how it is supported by the safety and regulation documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agostoni C, Bresson J, Fairweather-Tait S, et al. Scientific opinion on the substantiation of health claims related to proanthocyanidins from cranberry (Vaccinium macrocarpon Aiton) fruit and defence against bacterial pathogens in the lower urinary tract (ID 1841, 2153, 2770, 3328), “powerful protectors of our gums” (ID 1365), and “heart health” (ID 2499) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011a;9(6):2215–33.

    Article  Google Scholar 

  • Agostoni C, Bresson J, Fairweather-Tait S, et al. Scientific Opinion on the substantiation of health claims related to oligomeric procyanidins (OPCs) from grape (Vitis vinifera L.) seeds and improvement of visual adaptation to the dark (ID 680) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011b;9(6):2250–63.

    Article  Google Scholar 

  • Appeldoorn MM, Vincken JP, Aura AM, et al. Procyanidin dimers are metabolized by human microbiota with 2-(3,4 dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J Agric Food Chem. 2009;57:1084–92.

    Article  CAS  PubMed  Google Scholar 

  • Atta EM, Mohamed NH, Abdelgawad AAM. Antioxidants: an overview on the natural and synthetic types. Eur Chem Bull. 2017;6(8):365–75.

    Article  CAS  Google Scholar 

  • Bakuradze T, Tausend A, Galan J, et al. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radic Res. 2019;53(S1):1045–55.

    Article  CAS  PubMed  Google Scholar 

  • Berendsen R, Güell C, Ferrando M. A procyanidin-rich extract encapsulated in water-in-oil-in-water emulsions produced by premix membrane emulsification. Food Hydrocoll. 2015a;43:636–48.

    Article  CAS  Google Scholar 

  • Berendsen R, Güell C, Ferrando M. Spray dried double emulsions containing procyanidin-rich extracts produced by premix membrane emulsification: effect of interfacial composition. Food Chem. 2015b;178:251–8.

    Article  CAS  PubMed  Google Scholar 

  • Bi J, Tian C, Zhang G, et al. Novel procyanidins-loaded chitosan-graft-polyvinyl alcohol film with sustained antibacterial activity for food packaging. Food Chem. 2021;365:1–9.

    Article  Google Scholar 

  • Bouhanna I, Boussaa A, Boumaza A, et al. Characterization and antibacterial activity of gelatin-based film incorporated with Arbutus unedo L. fruit extract on Sardina pilchardus J. Food Process Preserv. 2021;45:1–11.

    Article  Google Scholar 

  • Bussy U, May BR, Olanrewaju Y, et al. Reliable, accessible and transferable method for the quantification of flavanols and procyanidins in foodstuffs and dietary supplements. Food Funct. 2020;11:131–8.

    Article  CAS  PubMed  Google Scholar 

  • Carmelo-Luna FJ, Mendoza-Wilson AM, Montfort GR, et al. Synthesis and experimental/computational characterization of sorghum procyanidins–gelatin nanoparticles. Bioorg Med Chem. 2021;42:1–13.

    Article  Google Scholar 

  • Cerda-Opazo P, Gotteland M, Oyarzun-Ampuero FA, et al. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll. 2021;111:1–11.

    Article  Google Scholar 

  • Chen Y, Zhang R, Xie B, et al. Lotus seedpod proanthocyanidin-whey protein complexes: impact on physical and chemical stability of β-carotene-nanoemulsions. Food Res Int. 2020;127:1–11.

    Article  Google Scholar 

  • Constanza KE, White BL, Davis JP, et al. Value-added processing of peanut skins: antioxidant capacity, total phenolics, and procyanidin content of spray-dried extracts. J Agric Food Chem. 2012;60:10776–83.

    Article  CAS  PubMed  Google Scholar 

  • Di Mattia C, Martuscelli M, Sacchetti G, et al. Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Res Int. 2014;63:367–72.

    Article  Google Scholar 

  • Díaz-Bandera D, Villanueva-Carvajal A, Dublán-García O, et al. Assessing release kinetics and dissolution of spray-dried Roselle (Hibiscus sabdariffa L.) extract encapsulated with different carrier agents. LWT Food Sci Technol. 2015;64:693–8.

    Article  Google Scholar 

  • Engemann A, Hübner F, Rzeppa S, et al. Intestinal metabolism of two A-type procyanidins using the pig cecum model: detailed structure elucidation of unknown catabolites with fourier transform mass spectrometry (FTMS). J Agric Food Chem. 2012;60:749–57.

    Article  CAS  PubMed  Google Scholar 

  • Frontela C, Ros G, Martínez C, et al. Stability of Pycnogenol® as an ingredient in fruit juices subjected to in vitro gastrointestinal digestion. J Sci Food Agric. 2011;91:286–92.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Qiao L, Cao Y, et al. Structural elucidation and antioxidant activities of proanthocyanidins from chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves. PLoS One. 2014;9(5):1–12.

    Article  Google Scholar 

  • Gentile C, Allegra M, Angileri F, et al. Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Eur J Nutr. 2012;51:353–63.

    Article  CAS  PubMed  Google Scholar 

  • Gharanjig H, Gharanjig K, Farzi G, et al. Novel complex coacervates based on Zedo gum, cress seed gum and gelatin for loading of natural anthocyanins. Int J Biol Macromol. 2020;164:3349–60.

    Article  CAS  PubMed  Google Scholar 

  • Gibis M, Weiss CRJ. In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res Int. 2016;88:105–13.

    Article  CAS  PubMed  Google Scholar 

  • Gibis M, Vogt E, Weiss J. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food Funct. 2012;3:246–54.

    Article  CAS  PubMed  Google Scholar 

  • Gondal SA, Abbas N, Hussain A. Microencapsulation: A taste and odour masking approach for garlic (Allium sativum) powder. BJPharm. 2017;2(2):S19–20.

    Google Scholar 

  • Hellenbrand N, Sendker J, Lechtenberg M, et al. Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.). Fitoterapia. 2015;104:14–22.

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Hou F, Le HP. The impact of natural resources, energy consumption, and population growth on environmental quality: fresh evidence from the United States of America. Sci Total Environ. 2021;754:1–13.

    Article  Google Scholar 

  • Kim HW, Jeong JY, Seol K, et al. Effects of edible films containing procyanidin on the preservation of pork meat during chilled storage. Korean J Food Sci An. 2016;36(2):230–6.

    Article  Google Scholar 

  • Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:1–16.

    Google Scholar 

  • Kumar S, Pandey AK. Free radicals: health implications and their mitigation by herbals. Br J Med Med Res. 2015;7(6):438–57.

    Article  Google Scholar 

  • Kumar GP, Navya K, Ramya EM, et al. DNA damage protecting and free radical scavenging properties of Terminalia arjuna bark in PC-12 cells and plasmid DNA. Free Radic Antioxidants. 2013;3:35–9.

    Article  Google Scholar 

  • Kumar H, Choudhary N, Kumar VN, et al. Phenolic compounds and their health benefits: a review. J Food Res Technol. 2014;2(2):46–59.

    Google Scholar 

  • Ky I, Le Floch A, Zeng L, et al. Tannins. Reference module in food science encyclopedia of food and health. London: Elsevier; 2016.

    Google Scholar 

  • Labuschagne P. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: a review. Food Res Int. 2018;107:227–47.

    Article  CAS  PubMed  Google Scholar 

  • Lagouge M, Larsson NG. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med. 2013;273:29–543.

    Article  Google Scholar 

  • Lavelli V, Sri Harsha PSC. Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Res Int. 2019;119:822–8.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y. Cancer chemopreventive potential of procyanidin. Toxicol Res. 2017;33(4):273–82.

    Article  CAS  PubMed  Google Scholar 

  • Leyva-Porras G, Román-Aguirre M, Cruz-Alcantar P, et al. Application of antioxidants as an alternative improving of shelf life in foods. Polysaccharides. 2021;2:594–607.

    Article  CAS  Google Scholar 

  • Li X, Sui Y, Li S, et al. A-type procyanidins from litchi pericarp ameliorate hyperglycaemia by regulating hepatic and muscle glucose metabolism in streptozotocin (STZ)-induced diabetic mice fed with high fat diet. J Funct Foods. 2016a;27:711–22.

    Article  CAS  Google Scholar 

  • Li Q, Wanga X, Chen J, et al. Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chem. 2016b;208:309–17.

    Article  CAS  PubMed  Google Scholar 

  • López-Jaén AB, Valls-Bellésa V, Codoñer-Franch P. Antioxidants: a review. J Pediatr Biochem. 2013;3(3):123–8.

    Google Scholar 

  • Lorenzo C, Eugenio A. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric. 2011;3(1):9–16.

    Article  Google Scholar 

  • Luo M, Zhang R, Liu L, et al. Preparation, stability and antioxidant capacity of nano liposomes loaded with procyanidins from lychee pericarp. J Food Eng. 2020;284:1–10.

    Article  Google Scholar 

  • Man AWC, Li H, Xia N. Impact of lifestyles (diet and exercise) on vascular health: oxidative stress and endothelial function. Oxidative Med Cell Longev. 2020;2023:1–22.

    Article  Google Scholar 

  • Mannozzi C, Tylewicz U, Chinnici F, et al. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018;251:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Marchiani R, Bertolino M, Belviso S, et al. Yogurt enrichment with grape pomace: effect of grape cultivar on physicochemical, microbiological and sensory properties. J Food Qual. 2016;39:77–89.

    Article  CAS  Google Scholar 

  • Marcillo-Parra V, Tupuna-Yerovi DS, González Z, et al. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – a review. Trends Food Sci Technol. 2021;116:11–23.

    Article  CAS  Google Scholar 

  • Mármol I, Quero J, Jiménez-Moreno N, et al. A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci Technol. 2019;88:558–66.

    Article  Google Scholar 

  • Martin MA, Ramos S, Cordero-Herrera I, et al. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress. Nutrients. 2013;1149(5):2955–68.

    Article  Google Scholar 

  • Masumoto S, Terao A, Yamamoto Y, et al. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomics changes. Sci Rep. 2016;6:1–10.

    Article  Google Scholar 

  • Mattioli R, Francioso A, Mosca L, et al. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25:1–42.

    Article  Google Scholar 

  • Oracz J, Zyzelewicz D, Nebesny E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review. Crit Rev Food Sci Nutr. 2015;55:1176–92.

    Article  CAS  PubMed  Google Scholar 

  • Orejola J, Matsuo Y, Saito Y, et al. Characterization of proanthocyanidin oligomers of Ephedra sinica. Molecules. 2017;22:1–18.

    Article  Google Scholar 

  • Ottaviani JI, Kwik-Uribe C, Keen CL, et al. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr. 2012;95:851–8.

    Article  CAS  PubMed  Google Scholar 

  • Palikova I, Vostalova J, Zdarilova A, et al. Long-term effects of three commercial cranberry products on the antioxidative status in rats: a pilot study. J Agric Food Chem. 2010;58:1672–8.

    Article  CAS  PubMed  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5(47):1–15.

    Google Scholar 

  • Papillo VA, Locatelli M, Travaglia F, et al. Cocoa hulls polyphenols stabilized by microencapsulation as functional ingredient for bakery applications. Food Res Int. 2019;115:511–8.

    Article  CAS  PubMed  Google Scholar 

  • Pasini F, Chinnici F, Caboni MF, et al. Recovery of oligomeric proanthocyanidins and other phenolic compounds with established bioactivity from grape seed by-products. Molecules. 2019;24:1–12.

    Article  Google Scholar 

  • Portman D, Dolgow C, Maharjan P, et al. Frost-affected lentil (Lens culinaris M.) compositional changes through extrusion: potential application for the food industry. Cereal Chem. 2020;97:818–26.

    Article  CAS  Google Scholar 

  • Qin F, Zhang Y. Ultrasonic assisted extraction of procyanidns from Rhodiola rosea. Med Plant. 2012;3(8):72–5.

    CAS  Google Scholar 

  • Ramana KV, Reddy ABM, Majeti NVRK, et al. Therapeutic potential of natural antioxidants. Oxidative Med Cell Longev. 2018;2018:1–3.

    Article  Google Scholar 

  • Ramziia S, Ma H, Yao Y, et al. Enhanced antioxidant activity of fish gelatin–chitosan edible films incorporated with procyanidin. J Appl Polym Sci. 2018;135(10):1–10.

    Article  Google Scholar 

  • Rauf A, Imran M, Abu-Izneid T, et al. Proanthocyanidins: a comprehensive review. Biomed Pharmacother. 2019;116:1–6.

    Article  Google Scholar 

  • Rodriguez-Mateos A, Cifuentes-Gomez T, George TW, et al. Impact of cooking, proving, and baking on the (poly)phenol content of wild blueberry. J Agric Food Chem. 2014;62:3979–86.

    Article  CAS  PubMed  Google Scholar 

  • Rowley TJ, Bitner BF, Ray JD, et al. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. J Nutr Biochem. 2017;49:30–41.

    Article  CAS  PubMed  Google Scholar 

  • Rue EA, Rush MD, van Breemen RB. Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem Rev. 2018;17(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  • Santos SS, Rodrigues LM, Costa SC. Antioxidant compounds from blackberry (Rubus fruticosus) pomace: Microencapsulation by spray-dryer and pH stability evaluation. Food Packag Shelf Life. 2019;20:1–6.

    Article  Google Scholar 

  • Serra A, Macià A, Romero MP, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br J Nutr. 2010;103:944–52.

    Article  CAS  PubMed  Google Scholar 

  • Severo C, Anjos I, Souza VGL, et al. Development of cranberry extract films for the enhancement of food packaging antimicrobial properties. Food Packag Shelf Life. 2021;28:1–9.

    Article  Google Scholar 

  • Shabbir U, Rubab M, Daliri EBM, et al. Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota. Nutrients. 2021;13:1–23.

    Article  Google Scholar 

  • Singh CK, Siddiqui IA, El-Abd S, et al. Combination chemoprevention with grape antioxidants. Mol Nutr Food Res. 2016;60(6):1406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, et al. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol. 2016;174:1244–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spigno G, Amendola D, Dahmoune F, et al. Colloidal gas aphrons based separation process forthe purification and fractionation of natural phenolic extracts. Food Bioprod Process. 2015;94:434–42.

    Article  CAS  Google Scholar 

  • Stahl L, Miller KB, Apgar J, et al. Preservation of cocoa antioxidant activity, total polyphenols, flavan-3-ols, and procyanidin cosntent in foods prepared with cocoa powder. J Food Sci. 2009;74(6):C456–61.

    Article  CAS  PubMed  Google Scholar 

  • Stoupi S, Williamson G, Drynan JW, et al. A comparison of the in vitro biotransformation of(−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res. 2010a;54:747–59.

    Article  CAS  PubMed  Google Scholar 

  • Stoupi S, Williamson G, Drynan JW, et al. Procyanidin B2 catabolism by human fecal microflora: partial characterization of ‘dimeric’ intermediates. Arch Biochem Biophys. 2010b;501(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  • Tie S, Zhang X, Wang H, et al. Procyanidins-loaded complex coacervates for improved stability by self-crosslinking and calcium ions chelation. J Agric Food Chem. 2020;68:3163–70.

    Article  CAS  PubMed  Google Scholar 

  • Tie S, Su W, Zhang X, et al. pH-responsive core−shell microparticles prepared by a microfluidic chip for the encapsulation and controlled release of procyanidins. J Agric Food Chem. 2021;69(5):1466–77.

    Article  CAS  PubMed  Google Scholar 

  • Toro-Uribe S, López-Giraldo L, Decker EA. Relationship between the physiochemical properties of cocoa procyanidins and their ability to inhibit lipid oxidation in liposomes. J Agric Food Chem. 2018;66:4490–502.

    Article  CAS  PubMed  Google Scholar 

  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turck D, Bresson J, Burlingame B, et al. Safety of cranberry extract powder as a novel food ingredient pursuant to Regulation (EC) No 258/97. EFSA J. 2017;15(5):4777–94.

    Google Scholar 

  • USDA Database for the Proanthocyanidin content of selected foods release 2.1. 2015. https://www.ars.usda.gov/ARSUserFiles/80400535/Data/PA/PA02-1.pdf. Accessed 20 Sept 2021.

  • Vitaglione P, Lumaga RB, Ferracane R, et al. Human bioavailability of flavanols and phenolic acids from cocoa-nut creams enriched with free or microencapsulated cocoa polyphenols. Br J Nutr. 2013;109:1832–43.

    Article  CAS  PubMed  Google Scholar 

  • Vukoja J, Buljeta I, Pichler A, et al. Formulation and stability of cellulose-based delivery systems of raspberry phenolics. PRO. 2021;9(90):1–12.

    Google Scholar 

  • Wong X, Carrasco-Pozo C, Escobar E, et al. Deleterious effect of p-cresol on human colonic epithelial cells prevented by proanthocyanidin-containing polyphenol extracts from fruits and proanthocyanidin bacterial metabolites. J Agric Food Chem. 2016;64:3574–83.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Huang Z, Qin P, et al. Chemical characterization of a procyanidin-rich extract from sorghum bran and its effect on oxidative stress and tumor inhibition in vivo. J Agric Food Chem. 2011;59:8609–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Resat Atilgan, M., Bayraktar, O. (2022). Procyanidins. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics