Skip to main content

Current Implantable Devices in Human Neurological Surgery

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

The different nosological entities that lead to central nervous system (CNS) damage often produce neurological deficits that drastically impair the level of functional independence and quality of life of the individuals who suffer from them. Traditionally, neurosurgeons have played an important role in the acute phase of CNS lesions by carrying out different interventions aimed at their stabilization and the prevention of further progression. However, the constant appearance of new implantable devices offers new ways of treatment while providing novel strategies to induce plastic changes in the damaged circuits. On top of that, the new generations of neurosurgeons have on hand novel and more advanced cellular and sub-cellular tools that permit the manipulation of cells, molecules, and genes and the application of specific immunotherapy techniques in order to restore CNS morphology and function. The role of neurosurgery is, therefore, changing, and there is now an imminent need to redesign and develop less invasive, precise, and safe surgical interventions to apply these new therapies to a greater number of patients and at different stages of their diseases. This chapter reviews the main neurological devices for implantation in the CNS and the tools and methodologies used for their indication, diagnosis, and monitoring. Some concepts on deep brain stimulation and brain–machine interfaces are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Spinal Cord Injury Statistical Center (2014) Spinal cord injury facts and figures at a glance. J Spinal Cord Med 37:355–356

    Article  Google Scholar 

  2. Fariña MM, Barrera SS, Marqués AM et al (2017) Actualización en lesión medular aguda postraumática. Parte 2. Med Intensiva 41:306–315

    Article  Google Scholar 

  3. Krucoff MO, Miller JP, Saxena T et al (2019). Toward functional restoration of the central nervous system: A review of translational neuroscience principles. Neurosurgery 84:30–40

    Article  PubMed  Google Scholar 

  4. Gharabaghi A, Kraus D, Leão MT et al (2014) Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front Hum Neurosci 8:122

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li S, Nie EH, Yin Y et al (2015) GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat Neurosci 18:1737–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen DF, Schneider GE, Martinou JC, Tonegawa S (1997) Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385:434–439

    Article  CAS  PubMed  Google Scholar 

  7. Hu X, Leak RK, Shi Y et al (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11:56–64

    Article  PubMed  Google Scholar 

  8. Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brommer B, Engel O, Kopp MA et al (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139:692–707

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dinsmore JH, Martin J, Siegan J et al (2002) CNS grafts for treatment of neurologic disorders. In: Methods of Tissue Engineering. 1st Ed, San Diego: Academic Press

    Google Scholar 

  11. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    Article  CAS  PubMed  Google Scholar 

  12. Ahuja CS, Mothe A, Khazaei M (2020) The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 9:1509–1530

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jea A, Al-Otibi M, Rutka JT et al (2007) The history of neurosurgery at the Hospital for Sick Children in Toronto. Neurosurgery 61:612–625

    Article  PubMed  Google Scholar 

  14. Dandy WE, Blackfan KD (1914) Internal hydrocephalus: An experimental, clinical and pathological study. Am J Dis Child 8:406–482

    Article  Google Scholar 

  15. Otto SR, Moore J, Linthicum F et al (2012) Histopathological analysis of a 15-year user of an auditory brainstem implant. Laryngoscope 122:645–648

    Article  PubMed  Google Scholar 

  16. Erhardt JB, Fuhrer E, Gruschke OG et al (2018) Should patients with brain implants undergo MRI? J Neural Eng 15:041002

    Article  PubMed  Google Scholar 

  17. Hughes MA (2016) Insinuating electronics in the brain. Surgeon 14:213–218

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwemmer MA, Skomrock ND, Sederberg PB et al (2018) Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat Med 24:1669–1676

    Article  CAS  PubMed  Google Scholar 

  19. Hochberg LR, Bacher D, Jarosiewicz B et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bouton CE, Shaikhouni A, Annetta NV et al (2016) Restoring cortical control of functional movement in a human with quadriplegia. Nature 533:247–250

    Article  CAS  PubMed  Google Scholar 

  21. Sui Y, Tian Y, Ko WKD et al (2021). Deep Brain Stimulation Initiative: Toward innovative technology, new disease indications, and approaches to current and future clinical challenges in neuromodulation therapy. Front Neurol 11:597451

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cantó SC, Dueñas BP, Arboix JR (2017) Estimulación cerebral profunda como tratamiento de los trastornos del movimiento en la edad pediátrica. In: Martín JO, Pisón JL. Neurocirugía Pediátrica. Editorial Ergon, Madrid, 1a (ed), vol 2017

    Google Scholar 

  23. Barnaure I, Pollak P, Momjian S et al (2015) Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT). Neuroradiology 57:903–908

    Article  CAS  PubMed  Google Scholar 

  24. López-Larraz E, Trincado-Alonso F, Rajasekaran V et al (2016) Control of an ambulatory exoskeleton with a brain–machine interface for spinal cord injury gait rehabilitation. Front Neurosci 10:359

    Article  PubMed  PubMed Central  Google Scholar 

  25. Trincado-Alonso F, López-Larraz E, Resquín F et al (2018) A pilot study of brain-triggered electrical stimulation with visual feedback in patients with incomplete spinal cord injury. J Med Biol Eng 38:790–803

    Article  Google Scholar 

  26. Sandner B, Pillai DR, Heidemann RM et al (2009) In vivo high-resolution imaging of the injured rat spinal cord using a 3.0T clinical MR scanner. J Magn Reson Imaging 29:725–730

    Article  PubMed  Google Scholar 

  27. Cunha L, Horvath I, Ferreira S, et al (2014) Preclinical imaging: an essential ally in modern biosciences. Mol Diagn Ther 18:153–73

    Article  PubMed  Google Scholar 

  28. Weber T, Vroemen M, Behr V et al (2006) In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord. Am J Neuroradiol 27:598–604

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Domínguez-Bajo A, González-Mayorga A, Guerrero CR et al (2019) Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials 192:461–474

    Article  PubMed  Google Scholar 

  30. Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Felder J, Celik AA, Choi CH et al (2017) 9.4 T small animal MRI using clinical components for direct translational studies. J Transl Med 15:264

    Google Scholar 

  32. Yang J, Li Q (2020) Manganese-enhanced magnetic resonance imaging: application in central nervous system diseases. Front Neurol 11:143

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen P, Bornhorst J, Aschner M (2018) Manganese metabolism in humans. Front Biosci 23:1655–79

    Article  CAS  Google Scholar 

  34. Hoogenboom WS, Rubin TG, Ye K et al (2019). Diffusion tensor imaging of the evolving response to mild traumatic brain injury in rats. J Exp Neurosci 13:1179069519858627

    Article  PubMed  PubMed Central  Google Scholar 

  35. Martirosyan NL, Turner GH, Kaufman J et al (2016) Manganese-enhanced MRI offers correlation with severity of spinal cord injury in experimental models. Open Neuroimag J 10:139–147

    Article  PubMed  PubMed Central  Google Scholar 

  36. Donahue CJ, Sotiropoulos SN, Jbabdi S et al (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36:6758–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sinke MRT, Otte WM, Christiaens D et al (2018) Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics. Brain Struct Funct 223:2269–2285

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hernández-Balaguera E, López-Dolado E, Polo JL (2018) In vivo rat spinal cord and striated muscle monitoring using the current interruption method and bioimpedance measurements. J Electrochem Soc 165:G3099–G3103

    Article  Google Scholar 

  39. Salatino JW, Ludwig KA, Kozai TDY, Purcell EK (2017) Glial responses to implanted electrodes in the brain. Nat Biomed Eng 1:862–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawan M, Mounaim F, Lesbros G (2008) Wireless monitoring of electrode-tissues interfaces for long term characterization. Analog Integr Circ Sig Process 55:103–114

    Article  Google Scholar 

  41. Lempka SF, Miocinovic S, Johnson MD et al (2009) In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng 6:046001

    Article  PubMed  PubMed Central  Google Scholar 

  42. Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198

    Article  PubMed  Google Scholar 

  43. Krukiewicz K (2020) Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue: A mini review. Electrochem Commun 116:106742

    Article  CAS  Google Scholar 

  44. Barsoukov E, Macdonald JR (2018) Impedance Spectroscopy. Theory, Experiment, and Applications, 3rd edn. Wiley, New York

    Google Scholar 

  45. Hernández-Balaguera E, López-Dolado E, Polo JL (2016) Obtaining electrical equivalent circuits of biological tissues using the current interruption method, circuit theory and fractional calculus. RSC Adv 6:22312–22319

    Article  Google Scholar 

  46. Hernández-Balaguera E, Vara H, Polo JL (2016) An electrochemical impedance study of anomalous diffusion in PEDOT-coated carbon microfiber electrodes for neural applications. J Electroanal Chem 775:251–257

    Article  Google Scholar 

  47. Fricke H, Morse S (1925). The electric resistance and capacity of blood for frequencies between 800 and 4(1/2) million cycles. J Gen Physiol 9:153–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cole KS (1940) Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp Quant Biol 8:110–122

    Article  CAS  Google Scholar 

  49. Williams JC, Hippensteel JA, Dilgen J et al (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4:410–423

    Article  PubMed  Google Scholar 

  50. Mercanzini A, Colin P, Bensadoun JC, Bertsch A, Renaud P (2009) In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays. IEEE Trans Biomed Eng 56:1909–1918

    Article  PubMed  Google Scholar 

  51. Hernández-Balaguera E, Vara H, Polo JL (2018) Identification of capacitance distribution in neuronal membranes from a fractional-order electrical circuit and whole-cell patch-clamped cells. J Electrochem Soc 165:G3104–G3111

    Article  Google Scholar 

  52. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Dongen M, Serdijn W (2016) Design of efficient and safe neural stimulators: a multidisciplinary approach. Springer, Switzerland

    Book  Google Scholar 

  54. Hernández-Labrado GR, Polo JL, López-Dolado E, Collazos-Castro JE (2011) Spinal cord direct current stimulation: finite element analysis of the electric field and current density. Med Biol Eng Comput 49:417–429

    Article  PubMed  Google Scholar 

  55. Yang L, Li H, Ding J et (2018) Optimal combination of electrodes and conductive gels for brain electrical impedance tomography. Biomed Eng Online 17:186

    Google Scholar 

  56. Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Biomedical Sciences, vol. 8. Middlesex University, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa López-Dolado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madroñero-Mariscal, R. et al. (2022). Current Implantable Devices in Human Neurological Surgery. In: López-Dolado, E., Concepción Serrano, M. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81400-7_11

Download citation

Publish with us

Policies and ethics