Skip to main content

Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2018

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 144))

  • 350 Accesses

Abstract

Sparse grids enable accurate function approximation in higher-dimensional settings with a moderate number of grid points. In this paper, we introduce generalized versions of various efficient sparse grid algorithms in a unified notation: For local basis functions, transformations between function values at grid points and interpolation coefficients can be efficiently realized using the well-known unidirectional principle (Balder and Zenger, SIAM Journal on Scientific Computing, 17(3):631–646, May 1996; Bungartz, Finite Elements of Higher Order on Sparse Grids, Universität München, Aachen, November 1998). For general basis functions without spatial adaptivity, Avila and Carrington show in (The Journal of Chemical Physics, 143(21):214108, 2015) and follow-up work that the unidirectional principle can instead be applied to an equivalent incremental basis, and we show that a second application of the unidirectional principle can be used to compute interpolation coefficients for the original, non-incremental basis. Our Open Source implementation for the latter case is able to compute interpolation coefficients for up to 20 million sparse grid points in one second on a single CPU core. We also discuss the efficient application of linear operators occurring in derivative evaluations of interpolants and in the solution of partial differential equations on sparse grids with finite elements, e.g., using the UpDown scheme (Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung, PhD thesis, Technische Universität München, 1992; Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems, Verlag Dr. Hut, München, February 2010; Zeiser, Journal of Scientific Computing, 47(3):328–346, 2011; Bungartz et al., Journal of Computational and Applied Mathematics, 236(15):3741–3750, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proof: In a decomposition \(\tilde {M}^{(1)} = LU\), both L and U need to be invertible. Hence, their diagonal entries are nonzero and thus, \(\tilde {M}^{(1)}_{11}\) is nonzero, a contradiction.

  2. 2.

    https://github.com/dholzmueller/fast_sparse_interpolation.

  3. 3.

    https://doi.org/10.18419/darus-1779.

  4. 4.

    Since the runtime of the algorithm does not depend on the particular choice of global basis functions, we simply used monomials for our runtime measurements.

References

  1. The SG++ library. http://sgpp.sparsegrids.org.

  2. Gustavo Avila and Tucker Carrington Jr. Nonproduct quadrature grids for solving the vibrational Schrödinger equation. The Journal of Chemical Physics, 131(17):174103, 2009.

    Google Scholar 

  3. Gustavo Avila and Tucker Carrington Jr. Solving the Schrödinger equation using Smolyak interpolants. The Journal of Chemical Physics, 139(13):134114, 2013.

    Google Scholar 

  4. Gustavo Avila and Tucker Carrington Jr. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra. The Journal of Chemical Physics, 143(21):214108, 2015.

    Google Scholar 

  5. Gustavo Avila and Tucker Carrington Jr. Computing vibrational energy levels of CH4 with a Smolyak collocation method. The Journal of Chemical Physics, 147(14):144102, 2017.

    Google Scholar 

  6. Gustavo Avila and Tucker Carrington Jr. Reducing the cost of using collocation to compute vibrational energy levels: Results for CH2nh. The Journal of Chemical Physics, 147(6):064103, 2017.

    Google Scholar 

  7. Robert Balder and Christoph Zenger. The solution of multidimensional real Helmholtz equations on sparse grids. SIAM Journal on Scientific Computing, 17(3):631–646, may 1996.

    Google Scholar 

  8. H.-J. Bungartz, A. Heinecke, D. Pflüger, and S. Schraufstetter. Parallelizing a Black-Scholes solver based on finite elements and sparse grids. Concurrency and Computation: Practice and Experience, 26(9):1640–1653, 2014.

    Article  Google Scholar 

  9. Hans-Joachim Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. PhD thesis, Technische Universität München, 1992.

    Google Scholar 

  10. Hans-Joachim Bungartz. Finite Elements of Higher Order on Sparse Grids. Habilitationsschrift, Fakultät für Informatik, Technische Universität München, Aachen, November 1998.

    Google Scholar 

  11. Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

    Article  MathSciNet  Google Scholar 

  12. Hans-Joachim Bungartz, Alexander Heinecke, Dirk Pflüger, and Stefanie Schraufstetter. Option pricing with a direct adaptive sparse grid approach. Journal of Computational and Applied Mathematics, 236(15):3741 – 3750, 2012. Proceedings of the Fifteenth International Congress on Computational and Applied Mathematics (ICCAM-2010), Leuven, Belgium, 5–9 July, 2010.

    Google Scholar 

  13. Gerrit Buse, Dirk Pflüger, Alin Murarasu, and Riko Jacob. A non-static data layout enhancing parallelism and vectorization in sparse grid algorithms. In 2012 11th International Symposium on Parallel and Distributed Computing, pages 195–202, June 2012.

    Google Scholar 

  14. Gerrit Buse, Dirk Pflüger, and Riko Jacob. Efficient pseudorecursive evaluation schemes for non-adaptive sparse grids. In Jochen Garcke and Dirk Pflüger, editors, Sparse Grids and Applications - Munich 2012, volume 97 of Lecture Notes in Computational Science and Engineering, pages 1–27. Springer International Publishing, 2014.

    Google Scholar 

  15. Daniel Butnaru, Gerrit Buse, and Dirk Pflüger. A parallel and distributed surrogate model implementation for computational steering. In Proceeding of the 11th International Symposium on Parallel and Distributed Computing - ISPDC 2012, Munich, June 2012. IEEE.

    Google Scholar 

  16. Gregery Buzzard. Global sensitivity analysis using sparse grid interpolation and polynomial chaos. Reliability Engineering & System Safety, 107, 01 2011.

    Google Scholar 

  17. Michael Eldred. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009.

    Google Scholar 

  18. Fabian Franzelin. Data-Driven Uncertainty Quantification for Large-Scale Simulations. Verlag Dr. Hut, August 2018.

    Google Scholar 

  19. Jochen Garcke, Michael Griebel, and Michael Thess. Data mining with sparse grids. Computing, 67(3):225–253, 2001.

    Article  MathSciNet  Google Scholar 

  20. M. Griebel, W. Huber, U. Rüde, and T. Störtkuhl. The combination technique for parallel sparse-grid-preconditioning or -solution of PDEs on workstation networks. In Luc Bougé, Michel Cosnard, Yves Robert, and Denis Trystram, editors, Parallel Processing: CONPAR 92 VAPP V, volume 634 of LNCS, 1992.

    Google Scholar 

  21. Alexander Heinecke. Boosting Scientific Computing Applications through Leveraging Data Parallel Architectures. PhD thesis, Technical University Munich, 2014.

    Google Scholar 

  22. Alexander Heinecke and Dirk Pflüger. Emerging architectures enable to boost massively parallel data mining using adaptive sparse grids. International Journal of Parallel Programming, 41(3):357–399, Jul 2012.

    Article  Google Scholar 

  23. Roger A. Horn and Charles R. Johnson. Matrix Analysis, Second Edition. Cambridge university press, 2013.

    Google Scholar 

  24. Philipp Hupp. Communication efficient algorithms for numerical problems on full and sparse grids. PhD thesis, ETH Zurich, 2014.

    Google Scholar 

  25. Philipp Hupp and Riko Jacob. A cache-optimal alternative to the unidirectional hierarchization algorithm. In Jochen Garcke and Dirk Pflüger, editors, Sparse Grids and Applications - Stuttgart 2014, pages 103–132, Cham, 2016. Springer International Publishing.

    Google Scholar 

  26. Riko Jacob. Efficient regular sparse grid hierarchization by a dynamic memory layout. In Jochen Garcke and Dirk Pflüger, editors, Sparse Grids and Applications - Munich 2012, pages 195–219, Cham, 2014. Springer International Publishing.

    Google Scholar 

  27. John D. Jakeman, Fabian Franzelin, Akil Narayan, Michael Eldred, and Dirk Pflüger. Polynomial chaos expansions for dependent random variables. Computer Methods in Applied Mechanics and Engineering, 351:643–666, 2019.

    Article  MathSciNet  Google Scholar 

  28. Franciszek Leja. Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme. Annales Polonici Mathematici, 4(1):8–13, 1957.

    Article  MathSciNet  Google Scholar 

  29. Alin Murarasu, Gerrit Buse, Josef Weidendorfer, Dirk Pflüger, and Arndt Bode. fastsg: A fast routines library for sparse grids. In Proceedings of the International Conference on Computational Science, ICCS 2012, Procedia Computer Science, June 2012.

    Google Scholar 

  30. Akil Narayan and John D. Jakeman. Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation. SIAM Journal on Scientific Computing, 36(6):A2952–A2983, 2014.

    Article  MathSciNet  Google Scholar 

  31. Benjamin Peherstorfer, Christoph Kowitz, Dirk Pflüger, and Hans-Joachim Bungartz. Selected recent applications of sparse grids. Numerical Mathematics: Theory, Methods and Applications, 8:47–77, 2 2015.

    Google Scholar 

  32. David Pfander, Gregor Daiß, and Dirk Pflüger. Heterogeneous distributed big data clustering on sparse grids. Algorithms, 12(3), 2019.

    Google Scholar 

  33. David Pfander, Alexander Heinecke, and Dirk Pflüger. A new subspace-based algorithm for efficient spatially adaptive sparse grid regression, classification and multi-evaluation. In Sparse Grids and Applications - Stuttgart 2014, pages 221–246, Cham, 2016. Springer International Publishing.

    Google Scholar 

  34. Dirk Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München, February 2010.

    Google Scholar 

  35. Michael F. Rehme, Fabian Franzelin, and Dirk Pflüger. B-splines on sparse grids for surrogates in uncertainty quantification. Reliability Engineering & System Safety, 209:107430, 2021.

    Article  Google Scholar 

  36. Sergey A. Smolyak. Quadrature and interpolation formulas for tensor products of certain class of functions. Soviet Mathematics Doklady, 4:240–243, 1963. Russisches Original: Doklady Akademii Nauk SSSR, 148 (5): 1042–1053.

    Google Scholar 

  37. Julian Valentin. B-Splines for Sparse Grids: Algorithms and Application to Higher-Dimensional Optimization. PhD thesis, University of Stuttgart, 2019.

    Google Scholar 

  38. Julian Valentin and Dirk Pflüger. Fundamental splines on sparse grids and their application to gradient-based optimization. In Sparse Grids and Applications – Miami 2016, number 123 in Lecture Notes in Computational Science and Engineering, pages 229–251. Springer, 2018.

    Google Scholar 

  39. Norbert Wiener. The homogeneous chaos. Am. J. Math, 60:897–936, 1938.

    Article  MathSciNet  Google Scholar 

  40. Justin Gregory Winokur. Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification. PhD thesis, Duke University, 2015.

    Google Scholar 

  41. Robert Wodraszka and Tucker Carrington Jr. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface. The Journal of Chemical Physics, 150(15):154108, 2019.

    Google Scholar 

  42. Robert Wodraszka and Tucker Carrington Jr. Efficiently transforming from values of a function on a sparse grid to basis coefficients. Sparse Grids and Applications – Munich 2018, to appear in 2021.

    Google Scholar 

  43. Andreas Zeiser. Fast matrix-vector multiplication in the sparse-grid Galerkin method. Journal of Scientific Computing, 47(3):328–346, 2011.

    Article  MathSciNet  Google Scholar 

  44. Christoph Zenger. Sparse Grids. In Wolfgang Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid Mechanics, pages 241–251. Vieweg, 1991.

    Google Scholar 

Download references

Acknowledgements

We thank Tucker Carrington for many helpful discussions on this topic. Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2075 - 390740016. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting David Holzmüller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Pflüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holzmüller, D., Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In: Bungartz, HJ., Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2018. Lecture Notes in Computational Science and Engineering, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-81362-8_4

Download citation

Publish with us

Policies and ethics