Skip to main content

Moving Forward: Expected Opportunities for the Development of New Therapeutic Agents

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

This chapter is mainly dedicated to reviewing the achievements made so far for the development of new agents for targeted therapies and the future perspective for the treatment of various conditions using radiopharmaceuticals that are currently in preclinical studies or entering clinical trials. The primary focus will be on various antibodies, but peptides, colloids, nanoparticles, and aptamers can also be attached to a number of targeting vehicles for both diagnosis and therapy. This chapter is meant to look at those agents which are in clinical trials and should be entering the clinic in the next 2–5 years, or which have just been introduced into human clinical trials, or those that are just emerging from clinical trials. While the focus is on therapeutic compounds, the latest emphasis in nuclear medicine relates to “theranostics”—combining radionuclide imaging and targeting vehicles. In this paradigm, a nuclear medicine imaging test can show whether the target is present in a patient, and if so, a radioactive therapeutic can be administered. Initial compounds have primarily been developed to target different cancers, but increasingly, other “targets” in infection, neurology, cardiology, and even rheumatology are becoming the focus of the nuclear medicine arsenal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence B. Radioactivity before the curies. Am J Phys. 1965;33:128.

    Article  Google Scholar 

  2. Siegel E. The beginnings of radioiodine therapy of metastatic thyroid carcinoma: a memoir of Samuel M. Seidlin, M. D. (1895-1955) and his celebrated patient. Cancer Biother Radiopharm. 1999;14(2):71–9.

    Article  CAS  PubMed  Google Scholar 

  3. Arevalo-Perez J, et al. A perspective of the future of nuclear medicine training and certification. Semin Nucl Med. 2016;46(1):88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCready VR. Radioiodine—the success story of nuclear medicine: 75th anniversary of the first use of Iodine-131 in humans. Eur J Nucl Med Mol Imaging. 2017;44(2):179–82.

    Article  PubMed  Google Scholar 

  5. Turner JH. An introduction to the clinical practice of theranostics in oncology. Br J Radiol. 2018;91(1091):20180440.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roxin A, Zhang C, Hugh S, Lepage M, Zhang Z, Lin K, Bénard F, Perrin M. A metal-free DOTA-conjugated 18F-labeled radiotracer: [18F]DOTAAMBF3-LLP2A for imaging VLA-4 over-expression in murine melanoma with improved tumor uptake and greatly enhanced renal clearance. Bioconjugate Chem. 2019:1–36. https://doi.org/10.1021/acs.bioconjchem.9b00146.

  8. Muller C, et al. Therapeutic radiometals beyond (177)Lu and (90)Y: production and application of promising alpha-particle, beta(−)-particle, and Auger electron emitters. J Nucl Med. 2017;58(Suppl 2):91S–6S.

    Article  CAS  PubMed  Google Scholar 

  9. Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F. Promising scandium radionuclides for nuclear medicine: a review on the production and chemistry up to in vivo proofs of concept. Cancer Biother Radiopharm. 2018;33(8):316–29.

    Article  CAS  PubMed  Google Scholar 

  10. Muller C, Domnanich KA, Umbricht CA, van der Meulen N. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol. 2018;91(1091):20180074.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Champion C, et al. Comparison between three promising ss-emitting radionuclides, (67)Cu, (47)Sc and (161)Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 2016;6(10):1611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Follacchio GA, De Feo MS, De Vincentis G, Monteleone F, Liberatore M. Radiopharmaceuticals labelled with copper radionuclides: clinical results in human beings. Curr Radiopharm. 2018;11(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  13. Hicks RJ, Jackson P, Kong G, Ware RE, Hofman MS, Pattison DA, Akhurst TA, Drummond E, Roselt P, Callahan J, Price R, Jeffery CM, Hong E, Noonan W, Herschtal A, Hicks LJ, Hedt A, Harris M, Paterson BM, Donnelly PS. 64Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy. J Nucl Med. 2019;60(6):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gourni E, et al. Copper-64 labeled macrobicyclic sarcophagine coupled to a GRP receptor antagonist shows great promise for PET imaging of prostate cancer. Mol Pharm. 2015;12(8):2781–90.

    Article  CAS  PubMed  Google Scholar 

  15. Boschi A, et al. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today. 2018;23(8):1489–501.

    Article  CAS  PubMed  Google Scholar 

  16. Kreuter J. Nanoparticles—a historical perspective. Int J Pharm. 2007;331(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  17. De La Vega JC, Esquinas PL, Rodríguez-Rodríguez C, Bokharaei M, Moskalev I, Liu D, Saatchi K, Häfeli UO. Radioembolization of hepatocellular carcinoma with built-in dosimetry: first in vivo results with uniformly-sized, biodegradable microspheres labeled with 188Re. Theranostics. 2019;9(3):868–83.

    Article  Google Scholar 

  18. Boas FE, Bodei L, Sofocleous CT. Radioembolization of colorectal liver metastases: indications, technique, and outcomes. J Nucl Med. 2017;58(Suppl 2):104S–11S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De La Vega JC, et al. Radioembolization of hepatocellular carcinoma with built-in dosimetry: first in vivo results with uniformly-sized, biodegradable microspheres labeled with (188)Re. Theranostics. 2019;9(3):868–83.

    Article  Google Scholar 

  20. Lepareur N, et al. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med (Lausanne). 2019;6:132.

    Article  Google Scholar 

  21. Bergqvist L, Strand SE, Persson BR. Particle sizing and biokinetics of interstitial lymphoscintigraphic agents. Semin Nucl Med. 1983;13(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider P, Farahati J, Reinders C. Radiosynovectomy in rheumatology, orthopedics, and hemophilia. J Nucl Med. 2005;46(Suppl 1):48S–54S.

    PubMed  Google Scholar 

  23. Srivastava SC, Mausner LF. Therapeutic radionuclides: production, physical characteristics, and applications. In: Baum RP, editor. Therapeutic nuclear medicine. Berlin: Springer; 2014. p. 12–46.

    Google Scholar 

  24. Donecker JM, Stevenson NR. Radiosynoviorthesis: a new therapeutic and diagnostic tool for canine joint inflammation. In: Fox SM, editor. Multimodal management of canine osteoarthritis. 2nd ed. Boca Raton, FL: CRC Press; 2017. p. 75–80.

    Google Scholar 

  25. Gratz S, Gobel D, Behr TM. Radiosynoviorthesis. An efficient form of local treatment for inflammatory joint diseases. Dtsch Med Wochenschr. 2002;127(33):1704–7.

    Article  CAS  PubMed  Google Scholar 

  26. Lattimer JC, et al. Intraarticular injection of a Tin-117m radiosynoviorthesis agent in normal canine elbows causes no adverse effects. Vet Radiol Ultrasound. 2019;60:567–74.

    Article  PubMed  Google Scholar 

  27. Krishnamurthy GT, et al. Tin-117m(4+)DTPA: pharmacokinetics and imaging characteristics in patients with metastatic bone pain. J Nucl Med. 1997;38(2):230–7.

    CAS  PubMed  Google Scholar 

  28. de Jong R, et al. The advantageous role of annexin A1 in cardiovascular disease. Cell Adhes Migr. 2017;11(3):261–74.

    Article  Google Scholar 

  29. Subbiah V, Anderson P, Rohren E. Alpha emitter radium 223 in high-risk osteosarcoma: first clinical evidence of response and blood-brain barrier penetration. JAMA Oncol. 2015;1(2):253–5.

    Article  PubMed  Google Scholar 

  30. Sedda AF, et al. Dermatological high-dose-rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clin Exp Dermatol. 2008;33(6):745–9.

    Article  CAS  PubMed  Google Scholar 

  31. Carrozzo AM, et al. Dermo beta brachytherapy with 188Re in extramammary Paget’s disease. G Ital Dermatol Venereol. 2014;149(1):115–21.

    CAS  PubMed  Google Scholar 

  32. Reitkopf-Brodutch S, et al. Ablation of experimental colon cancer by intratumoral 224Radium-loaded wires is mediated by alpha particles released from atoms which spread in the tumor and can be augmented by chemotherapy. Int J Radiat Biol. 2015;91(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  33. Nicolas GP, et al. New developments in peptide receptor radionuclide therapy. J Nucl Med. 2018; https://doi.org/10.2967/jnumed.118.213496.

  34. Patrikidou A, Loriot Y, Eymard JC, Albiges L, Massard C, Ileana E, et al. Who dies from prostate cancer? Prostate Cancer Prostatic Dis. 2014;17:348–52.

    Article  CAS  PubMed  Google Scholar 

  35. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, Joyal J, Kopka K, Debus J, Babich JW, Haberkorn U. Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kam BL, Teunissen JJ, Krenning EP, de Herder WW, Khan S, van Vliet EI, Kwekkeboom DJ. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S103–12.

    Article  PubMed  Google Scholar 

  37. Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schäfers M, Essler M, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  38. Bräuer A, Grubert LS, Roll W, Schrader AJ, Schäfers M, Bögemann M, Rahbar K. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(10):1663–70.

    Article  PubMed  Google Scholar 

  39. Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ, et al. Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43(1):42.

    Article  CAS  PubMed  Google Scholar 

  40. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71:630–4213.

    Article  PubMed  Google Scholar 

  41. von Eyben FE, Roviello G, Kiljunen T, Uprimny C, Virgolini I, Kairemo K, Joensuu T. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging. 2018;45:496–508.

    Article  Google Scholar 

  42. Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, Morgenstern A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59(5):795–802. https://doi.org/10.2967/jnumed.117.203539. Epub 2018 Jan 11.

    Article  CAS  PubMed  Google Scholar 

  43. Kopka K, Benesova M, Barinka C, Haberkorn U, Babich J. Glu-Ureido-based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low molecular-weight theranostic radiotracers. J Nucl Med. 2017;58:17S–26S.

    Article  CAS  PubMed  Google Scholar 

  44. Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70:926–37.

    Article  PubMed  Google Scholar 

  45. Budäus L, Leyh-Bannurah SR, Salomon G, Michl U, Heinzer H, Huland H, et al. Initial experience of (68)Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol. 2016;69(3):393–6.

    Article  PubMed  Google Scholar 

  46. von Eyben FE, Kiljunen T, Joensuu T, Kairemo K, Uprimny C, Virgolini I. 177Lu-PSMA-617 radioligand therapy for a patient with lymph node metastatic prostate cancer. Oncotarget. 2017;8:66112–6.

    Article  Google Scholar 

  47. Ahmadzadehfar H, Wegen S, Yordanova A, Fimmers R, Kürpig S, Eppard E, et al. Overall survival and response pattern of castration-resistant metastatic prostate cancer to multiple cycles of radioligand therapy using [177Lu]Lu-PSMA-617. Eur J Nucl Med Mol Imaging. 2017;44(9):1448–54.

    Article  CAS  PubMed  Google Scholar 

  48. Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016;57:1–8. https://doi.org/10.2967/jnumed.115.168443.

    Article  CAS  Google Scholar 

  49. Okamoto S, Thieme A, Allmann J, D’Alessandria C, Maurer T, Retz M, et al. Radiation dosimetry for 177Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. J Nucl Med. 2017;58(3):445–50.

    Article  CAS  PubMed  Google Scholar 

  50. Calopedos RJS, Chalasani V, Asher R, Emmett L, Woo HH. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017;20:352–60.

    Article  CAS  PubMed  Google Scholar 

  51. Yordanova A, Becker A, Eppard E, Kürpig S, Fisang C, Feldmann G, et al. The impact of repeated cycles of radioligand therapy using [177Lu]Lu-PSMA-617 on renal function in patients with hormone refractory metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(9):1473–9.

    Article  CAS  PubMed  Google Scholar 

  52. Rathke H, Kratochwil C, Hohenberger R, Giesel FL, Bruchertseifer F, Flechsig P, et al. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT. Eur J Nucl Med Mol Imaging. 2019;46(1):139–47. https://doi.org/10.1007/s00259-018-4135-8. Epub 2018 Aug 27.

    Article  CAS  PubMed  Google Scholar 

  53. Behe M, Behr TM. Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers. 2002;66(6):399–418.

    Article  CAS  PubMed  Google Scholar 

  54. Behr TM, Béhé M. Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32(2):97–109. https://doi.org/10.1053/snuc.2002.31028.

    Article  PubMed  Google Scholar 

  55. Malcolm J, et al. Targeted radionuclide therapy: new advances for improvement of patient management and response. Cancers (Basel). 2019;11(2):268.

    Article  CAS  Google Scholar 

  56. Loktev A, et al. Development of novel FAP-targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60:1421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bodet-Milin C, et al. Clinical results in medullary thyroid carcinoma suggest high potential of pretargeted immuno-PET for tumor imaging and theranostic approaches. Front Med (Lausanne). 2019;6:124.

    Article  Google Scholar 

  58. Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies—the next big thing in solid tumor therapeutics. Mol Med. 2018;24:50.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Frampas E, et al. Improvement of radioimmunotherapy using pretargeting. Front Oncol. 2013;3:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heskamp S, et al. Alpha- versus beta-emitting radionuclides for pretargeted radioimmunotherapy of carcinoembryonic antigen-expressing human colon cancer xenografts. J Nucl Med. 2017;58(6):926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okarvi SM, Maecke HR. Radiolabelled peptides in medical imaging. In: Peptide applications in biomedicine, biotechnology and bioengineering. Duxford: Woodhead Publishing; 2018. p. 431–83.

    Chapter  Google Scholar 

  62. Krolicki L, et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with (213)bi-substance P analogue. Eur J Nucl Med Mol Imaging. 2018;45(9):1636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sattiraju A, et al. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget. 2017;8(26):42997–3007.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sharma P, Debinski W. Receptor-targeted glial brain tumor therapies. Int J Mol Sci. 2018;19(11):3326.

    Article  PubMed Central  Google Scholar 

  65. Israel I, et al. Validation of an amino-acid-based radionuclide therapy plus external beam radiotherapy in heterotopic glioblastoma models. Nucl Med Biol. 2011;38(4):451–60.

    Article  CAS  PubMed  Google Scholar 

  66. Jadvar H, et al. Radiotheranostics in cancer diagnosis and management. Radiology. 2018;286(2):388–400.

    Article  PubMed  Google Scholar 

  67. Lapa C, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7(6):1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baum RP, et al. (177)Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J Nucl Med. 2018;59(5):809–14.

    Article  CAS  PubMed  Google Scholar 

  69. McConathy J, et al. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev. 2012;32(4):868–905.

    Article  CAS  PubMed  Google Scholar 

  70. Hayashi K, Anzai N. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J Gastrointest Oncol. 2017;9(1):21–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu Z, Wang F, Chen X. Integrin targeted delivery of radiotherapeutics. Theranostics. 2011;1:201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baum RP, et al. First-in-human study demonstrating tumor-angiogenesis by PET/CT imaging with (68)Ga-NODAGA-THERANOST, a high-affinity peptidomimetic for alphavbeta3 integrin receptor targeting. Cancer Biother Radiopharm. 2015;30(4):152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jacene HA, Filice R, Kasecamp W, Wahl RL. Comparison of 90Y-ibritumomab tiuxetan and 131I-tositumomab in clinical practice. J Nucl Med. 2007;48:1767–76.

    Article  CAS  PubMed  Google Scholar 

  74. Liu G, Dou S, Yin D, Squires S, Liu X, Wang Y, Rusckowski M, Hnatowich DJ. A novel pretargeting method for measuring antibody internalization in tumor cells. Cancer Biother Radiopharm. 2007;22(1):33–9.

    Article  PubMed  Google Scholar 

  75. Kratochwil C, Giesel FL, Stefanova M, Benesov M, Bronzel M, Afshar-Oromieh A, Mier W, Eder M, Kopka K, Haberkorn U. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170–6.

    Article  CAS  PubMed  Google Scholar 

  76. Tagawa ST, et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 ((177) Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125(15):2561–9.

    Article  CAS  PubMed  Google Scholar 

  77. Finn LE, Levy M, Orozco JJ, Park JH, Atallah E, Craig M, Perl AE, Scheinberg DA, Cicic D, Bergonio GR, Berger MS, Jurcic JGA. Phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with previously untreated acute myeloid leukemia (AML) unfit for intensive chemotherapy. Blood. 2017;130(Supplement 1):2638.

    Google Scholar 

  78. Jurcic JG. Clinical studies with bismuth-213 and actinium-225 for hematologic malignancies. Curr Radiopharm. 2018;11(3):192–9.

    Article  CAS  PubMed  Google Scholar 

  79. Iagaru A, et al. 131I-Tositumomab (Bexxar) vs. 90Y-Ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol Imaging Biol. 2010;12(2):198–203.

    Article  PubMed  Google Scholar 

  80. Orozco JJ, et al. Anti-CD45 radioimmunotherapy without TBI before transplantation facilitates persistent haploidentical donor engraftment. Blood. 2016;127(3):352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blakkisrud J, et al. Biodistribution and dosimetry results from a phase 1 trial of therapy with the antibody-radionuclide conjugate (177)Lu-lilotomab satetraxetan. J Nucl Med. 2018;59(4):704–10.

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther. 2019;4:34.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Massicano AVF, Marquez-Nostra BV, Lapi SE. Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging. 2018;17:1536012117745386.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang J, Fang R, Wang L, Chen G, Wang H, Wang Z, Zhao D, Pavlov VN, Kabirov I, Wang Z, Guo P, Peng L, Xu W. Identification of carbonic anhydrase IX as a novel target for endoscopic molecular imaging of human bladder cancer. Cell Physiol Biochem. 2018;47(4):1565–77.

    Article  CAS  PubMed  Google Scholar 

  85. Stillebroer AB, Mulders PFA, Boerman OC, Oyen WJG, Oosterwijk E. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Kidney Cancer. 2010;58(1):75–83.

    CAS  Google Scholar 

  86. Lau J, Lin KS, Benard F. Past, present, and future: development of theranostic agents targeting carbonic anhydrase IX. Theranostics. 2017;7(17):4322–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang N, Yao S, Liu D. Tumor necrosis factor-related apoptosis-inducing ligand additive with Iodine-131 of inhibits non-small cell lung cancer cells through promoting apoptosis. Oncol Lett. 2018;16(1):276–84.

    PubMed  PubMed Central  Google Scholar 

  88. Grinshtein N, Simms R, Hu M, Storozhuk Y, Moran M, Burak E, Forbes J, Valliant J. IGF-1R targeted alpha therapeutic FPI-1434 causes DNA double-stranded breaks and induces regression in preclinical models of human cancer proceedings from the TAT11. J Med Imaging Radiat Sci. 2019;50:S1–S42.

    Article  Google Scholar 

  89. Macaulay VM, et al. Phase I study of humanized monoclonal antibody AVE1642 directed against the type 1 insulin-like growth factor receptor (IGF-1R), administered in combination with anticancer therapies to patients with advanced solid tumors. Ann Oncol. 2013;24(3):784–91.

    Article  CAS  PubMed  Google Scholar 

  90. Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cortez-Retamozo V, Lahoutte T, Cavaliers V, Olive L. 99mTc-labeled nanobodies: a new type of targeted probes for imaging antigen expression. Curr Radiopharm. 2008;1(1):37–41.

    Article  CAS  Google Scholar 

  92. Xavier C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54(5):776–84.

    Article  CAS  PubMed  Google Scholar 

  93. Keyaerts M, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  94. D’Huyvetter M, et al. Targeted radionuclide therapy with a 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4(7):708–20.

    Article  PubMed  PubMed Central  Google Scholar 

  95. D’Huyvetter M, et al. (131)I-labeled anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Res. 2017;23(21):6616–28.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Krasniqi A, et al. Theranostic radiolabeled anti-CD20 sdAb for targeted radionuclide therapy of non-Hodgkin lymphoma. Mol Cancer Ther. 2017;16(12):2828–39.

    Article  CAS  PubMed  Google Scholar 

  97. Lemaire M, et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic nanobodies. Leukemia. 2014;28(2):444–7.

    Article  CAS  PubMed  Google Scholar 

  98. Broisat A, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110(7):927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Senders ML, et al. Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc Imaging. 2018; https://doi.org/10.1016/j.jcmg.2018.07.027.

  100. Andersson H, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmaco kinetics and dosimetry of (211)At-MX35 F(ab′)2—a phase I study. J Nucl Med. 2009;50(7):1153–60.

    Article  CAS  PubMed  Google Scholar 

  101. McLaughlin MF, et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One. 2013;8(1):e54531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Woodward J, et al. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug Chem. 2011;22(4):766–76.

    Google Scholar 

  103. Khalid U, et al. Radiolabelled aptamers for theranostic treatment of cancer. Pharmaceuticals (Basel). 2018;12(1):2.

    Article  Google Scholar 

  104. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv. 2015;33(6 Pt 2):1141–61.

    Article  CAS  PubMed  Google Scholar 

  105. Perkins AC, Missailidis S. Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging. 2007;51(4):292–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip F. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cohen, P.F., de Godoy, T.R.M., Kairemo, K. (2022). Moving Forward: Expected Opportunities for the Development of New Therapeutic Agents. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics