Skip to main content

Nuclear Imaging of Endogenous Markers of Lymphocyte Response

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

Current immune monitoring strategies in the clinic are limited in their sensitivity and specificity or struggle to provide precise spatiotemporal information, emphasizing the need for superior imaging probes that can provide macroscopic and accurate assessments of immune cells and their functional states in real time. Lymphocytes, comprising of T cells, B cells, and natural killer (NK) cells, have been a primary focus in the immune imaging field since many of the desired robust, killing responses in cancer immunotherapy and infection converge on these cell types, as does the undesired cytotoxicity observed in autoimmunity and transplant rejection. Identification and targeting of endogenous markers specific to these cells enables theirĀ noninvasive visualization in their native environment, bypassing the need for prior isolation or ex vivo radiochemical or genetic manipulation. In this chapter, we highlight nuclear imaging probes that have been developed in the last decade for specific visualization of endogenous biomarkers of lymphocytes, thereby reporting on their distinct behaviors including activation, proliferation, trafficking, inhibition, and cytotoxic effector functions. We discuss how imaging these processes can improve our understanding of local and systemic immune dynamics occurring in cancer immunotherapy and immunopathology and the potential utility of these radioactive probes for improving disease diagnosis, guiding treatment, and evaluating treatment response. Additionally, we discuss the strengths and limitations of these approaches and highlight areas of focus for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343ā€“53. https://doi.org/10.1038/ni.3123.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14(Suppl 2):49. https://doi.org/10.1186/s13223-018-0278-1.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568ā€“71. https://doi.org/10.1038/nature13954.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10(426):eaan4488. https://doi.org/10.1126/scitranslmed.aan4488.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 2019;20(6):1283. https://doi.org/10.3390/ijms20061283.

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1ā€“10. https://doi.org/10.1016/j.immuni.2013.07.012.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Beer L, Hochmair M, Prosch H. Pitfalls in the radiological response assessment of immunotherapy. Memo. 2018;11(2):138ā€“43. https://doi.org/10.1007/s12254-018-0389-x.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Aide N, Hicks RJ, Le Tourneau C, Lheureux S, Fanti S, Lopci E. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature. Eur J Nucl Med Mol Imaging. 2019;46(1):238ā€“50. https://doi.org/10.1007/s00259-018-4171-4.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Somarouthu B, Lee SI, Urban T, Sadow CA, Harris GJ, Kambadakone A. Immune-related tumour response assessment criteria: a comprehensive review. Br J Radiol. 2018;91(1084):20170457. https://doi.org/10.1259/bjr.20170457.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Borcoman E, Nandikolla A, Long G, Goel S, Le Tourneau C. Patterns of response and progression to immunotherapy. Am Soc Clin Oncol Educ Book. 2018;38:169ā€“78. https://doi.org/10.1200/EDBK_200643.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Ventola CL. Cancer immunotherapy, Part 3: Challenges and future trends. P T. 2017;42(8):514ā€“21.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Liu Z, Li Z. Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Theranostics. 2014;4(10):990ā€“1001. https://doi.org/10.7150/thno.9268.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET imaging of T cells. Trends Cancer. 2018;4(5):359ā€“73. https://doi.org/10.1016/j.trecan.2018.03.009.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Krekorian M, Fruhwirth GO, Srinivas M, Figdor CG, Heskamp S, Witney TH, et al. Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics. 2019;9(25):7924ā€“47. https://doi.org/10.7150/thno.37924.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127(8):2881ā€“91. https://doi.org/10.1172/JCI94549.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1ā€“11. https://doi.org/10.1111/j.1365-2249.2010.04143.x.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Maynard CL, Weaver CT. Intestinal effector T cells in health and disease. Immunity. 2009;31(3):389ā€“400. https://doi.org/10.1016/j.immuni.2009.08.012.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Comte D, Karampetsou MP, Tsokos GC. T cells as a therapeutic target in SLE. Lupus. 2015;24(4ā€“5):351ā€“63. https://doi.org/10.1177/0961203314556139.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Ingulli E. Mechanism of cellular rejection in transplantation. Pediatr Nephrol. 2010;25(1):61ā€“74. https://doi.org/10.1007/s00467-008-1020-x.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Ford ML. T cell cosignaling molecules in transplantation. Immunity. 2016;44(5):1020ā€“33. https://doi.org/10.1016/j.immuni.2016.04.012.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167ā€“79. https://doi.org/10.1056/NEJMra1609337.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Beilhack A, Schulz S, Baker J, Beilhack GF, Wieland CB, Herman EI, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106(3):1113ā€“22. https://doi.org/10.1182/blood-2005-02-0509.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Cazaux M, Grandjean CL, Lemaitre F, Garcia Z, Beck RJ, Milo I, et al. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J Exp Med. 2019;216(5):1038ā€“49. https://doi.org/10.1084/jem.20182375.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Balagopalan L, Sherman E, Barr VA, Samelson LE. Imaging techniques for assaying lymphocyte activation in action. Nat Rev Immunol. 2011;11(1):21ā€“33. https://doi.org/10.1038/nri2903.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897ā€“965. https://doi.org/10.1152/physrev.00049.2010.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Mayer AT, Gambhir SS. The immunoimaging toolbox. J Nucl Med. 2018;59(8):1174ā€“82. https://doi.org/10.2967/jnumed.116.185967.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120(8):3787ā€“851. https://doi.org/10.1021/acs.chemrev.9b00738.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Sharma SK, Chow A, Monette S, Vivier D, Pourat J, Edwards KJ, et al. Fc-mediated anomalous biodistribution of therapeutic antibodies in immunodeficient mouse models. Cancer Res. 2018;78(7):1820ā€“32. https://doi.org/10.1158/0008-5472.CAN-17-1958.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Vivier D, Sharma SK, Adumeau P, Rodriguez C, Fung K, Zeglis BM. The impact of FcgammaRI binding on immuno-PET. J Nucl Med. 2019;60(8):1174ā€“82. https://doi.org/10.2967/jnumed.118.223636.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol. 2015;67(2 Pt A):142ā€“52. https://doi.org/10.1016/j.molimm.2015.04.001.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody fragment and affibody ImmunoPET imaging agents: radiolabelling strategies and applications. ChemMedChem. 2018;13(23):2466ā€“78. https://doi.org/10.1002/cmdc.201800624.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, et al. Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A. 2015;112(19):6146ā€“51. https://doi.org/10.1073/pnas.1502609112.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front Immunol. 2018;9:273. https://doi.org/10.3389/fimmu.2018.00273.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Chakravarty R, Goel S, Cai W. Nanobody: the ā€œmagic bulletā€ for molecular imaging? Theranostics. 2014;4(4):386ā€“98. https://doi.org/10.7150/thno.8006.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Van Elssen C, Rashidian M, Vrbanac V, Wucherpfennig KW, Habre ZE, Sticht J, et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J Nucl Med. 2017;58(6):1003ā€“8. https://doi.org/10.2967/jnumed.116.186007.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Rashidian M, LaFleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH, et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc Natl Acad Sci U S A. 2019;116(34):16971ā€“80. https://doi.org/10.1073/pnas.1905005116.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214(8):2243ā€“55. https://doi.org/10.1084/jem.20161950.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, et al. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med. 2009;50(3):435ā€“43. https://doi.org/10.2967/jnumed.108.055608.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Carter LM, Poty S, Sharma SK, Lewis JS. Preclinical optimization of antibody-based radiopharmaceuticals for cancer imaging and radionuclide therapy-model, vector, and radionuclide selection. J Labelled Comp Radiopharm. 2018;61(9):611ā€“35. https://doi.org/10.1002/jlcr.3612.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Natarajan A, Hackel BJ, Gambhir SS. A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin Cancer Res. 2013;19(24):6820ā€“9. https://doi.org/10.1158/1078-0432.CCR-13-0626.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Ackerman SE, Currier NV, Bergen JM, Cochran JR. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Rev Proteomics. 2014;11(5):561ā€“72. https://doi.org/10.1586/14789450.2014.932251.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Kimura RH, Wang L, Shen B, Huo L, Tummers W, Filipp FV, et al. Evaluation of integrin alphavbeta6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nat Commun. 2019;10(1):4673. https://doi.org/10.1038/s41467-019-11863-w.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Donnelly DJ, Smith RA, Morin P, Lipovsek D, Gokemeijer J, Cohen D, et al. Synthesis and biologic evaluation of a novel (18)F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med. 2018;59(3):529ā€“35. https://doi.org/10.2967/jnumed.117.199596.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Wu AM. Engineered antibodies for molecular imaging of cancer. Methods. 2014;65(1):139ā€“47. https://doi.org/10.1016/j.ymeth.2013.09.015.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Menk AV, Scharping NE, Moreci RS, Zeng X, Guy C, Salvatore S, et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 2018;22(6):1509ā€“21. https://doi.org/10.1016/j.celrep.2018.01.040.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem. 1995;270(50):29682ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J. 2001;42(3):219ā€“32. https://doi.org/10.1093/ilar.42.3.219.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Endo K, Oriuchi N, Higuchi T, Iida Y, Hanaoka H, Miyakubo M, et al. PET and PET/CT using 18F-FDG in the diagnosis and management of cancer patients. Int J Clin Oncol. 2006;11(4):286ā€“96. https://doi.org/10.1007/s10147-006-0595-0.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Daly KP, Dearling JL, Seto T, Dunning P, Fahey F, Packard AB, et al. Use of [18F]FDG positron emission tomography to monitor the development of cardiac allograft rejection. Transplantation. 2015;99(9):e132ā€“9. https://doi.org/10.1097/TP.0000000000000618.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammationā€”current and emerging clinical applications. Clin Radiol. 2015;70(7):787ā€“800. https://doi.org/10.1016/j.crad.2015.03.010.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Wong ANM, McArthur GA, Hofman MS, Hicks RJ. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):67ā€“77. https://doi.org/10.1007/s00259-017-3691-7.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Takada K, Toyokawa G, Yoneshima Y, Tanaka K, Okamoto I, Shimokawa M, et al. (18)F-FDG uptake in PET/CT is a potential predictive biomarker of response to anti-PD-1 antibody therapy in non-small cell lung cancer. Sci Rep. 2019;9(1):13362. https://doi.org/10.1038/s41598-019-50079-2.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563ā€“82. https://doi.org/10.1016/j.bbamcr.2014.05.014.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14(6):e218ā€“28. https://doi.org/10.1016/S1470-2045(12)70582-X.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77(9):2318ā€“27. https://doi.org/10.1158/0008-5472.CAN-16-3346.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Gibson HM, McKnight BN, Malysa A, Dyson G, Wiesend WN, McCarthy CE, et al. IFNgamma PET imaging as a predictive tool for monitoring response to tumor immunotherapy. Cancer Res. 2018;78(19):5706ā€“17. https://doi.org/10.1158/0008-5472.CAN-18-0253.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Beckford-Vera DR, Gonzalez-Junca A, Janneck JS, Huynh TL, Blecha JE, Seo Y, et al. PET/CT imaging of human TNFalpha using [(89)Zr]Certolizumab pegol in a transgenic preclinical model of rheumatoid arthritis. Mol Imaging Biol. 2020;22(1):105ā€“14. https://doi.org/10.1007/s11307-019-01363-0.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging. 2018;45(10):1816ā€“31. https://doi.org/10.1007/s00259-018-4052-x.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Sato N, Wu H, Asiedu KO, Szajek LP, Griffiths GL, Choyke PL. (89)Zr-oxine complex PET cell imaging in monitoring cell-based therapies. Radiology. 2015;275(2):490ā€“500. https://doi.org/10.1148/radiol.15142849.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  60. Man F, Lim L, Volpe A, Gabizon A, Shmeeda H, Draper B, et al. In vivo PET tracking of (89)Zr-labeled Vgamma9Vdelta2 T cells to mouse xenograft breast tumors activated with liposomal alendronate. Mol Ther. 2019;27(1):219ā€“29. https://doi.org/10.1016/j.ymthe.2018.10.006.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol. 1989;7(2):250ā€“61. https://doi.org/10.1200/JCO.1989.7.2.250.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Kassis AI, Adelstein SJ. Chemotoxicity of indium-111 oxine in mammalian cells. J Nucl Med. 1985;26(2):187ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Signore A, Beales P, Sensi M, Zuccarini O, Pozzilli P. Labelling of lymphocytes with indium 111 oxine: effect on cell surface phenotype and antibody-dependent cellular cytotoxicity. Immunol Lett. 1983;6(3):151ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Sahu SK, Kassis AI, Makrigiorgos GM, Baranowska-Kortylewicz J, Adelstein SJ. The effects of indium-111 decay on pBR322 DNA. Radiat Res. 1995;141(2):193ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Acton PD, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging. 2005;49(4):349ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 1999;6(5):785ā€“91. https://doi.org/10.1038/sj.gt.3300877.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Lee JT, Moroz MA, Ponomarev V. Imaging T cell dynamics and function using PET and human nuclear reporter genes. Methods Mol Biol. 1790;2018:165ā€“80. https://doi.org/10.1007/978-1-4939-7860-1_13.

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Minn I, Rowe SP, Pomper MG. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol. 2019;20(8):e443ā€“e51. https://doi.org/10.1016/S1470-2045(19)30461-9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A. 2000;97(6):2785ā€“90. https://doi.org/10.1073/pnas.97.6.2785.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Yaghoubi SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc. 2006;1(6):3069ā€“75. https://doi.org/10.1038/nprot.2006.459.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9(373):eaag2196. https://doi.org/10.1126/scitranslmed.aag2196.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Blumenthal M, Skelton D, Pepper KA, Jahn T, Methangkool E, Kohn DB. Effective suicide gene therapy for leukemia in a model of insertional oncogenesis in mice. Mol Ther. 2007;15(1):183ā€“92. https://doi.org/10.1038/sj.mt.6300015.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood. 2006;107(6):2294ā€“302. https://doi.org/10.1182/blood-2005-08-3503.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Campbell DO, Yaghoubi SS, Su Y, Lee JT, Auerbach MS, Herschman H, et al. Structure-guided engineering of human thymidine kinase 2 as a positron emission tomography reporter gene for enhanced phosphorylation of non-natural thymidine analog reporter probe. J Biol Chem. 2012;287(1):446ā€“54. https://doi.org/10.1074/jbc.M111.314666.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Minn I, Huss DJ, Ahn HH, Chinn TM, Park A, Jones J, et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv. 2019;5(7):eaaw5096. https://doi.org/10.1126/sciadv.aaw5096.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Sharif-Paghaleh E, Sunassee K, Tavare R, Ratnasothy K, Koers A, Ali N, et al. In vivo SPECT reporter gene imaging of regulatory T cells. PLoS One. 2011;6(10):e25857. https://doi.org/10.1371/journal.pone.0025857.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia. 2001;3(6):480ā€“8. https://doi.org/10.1038/sj.neo.7900204.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. James ML, Hoehne A, Mayer AT, Lechtenberg K, Moreno M, Gowrishankar G, et al. Imaging B cells in a mouse model of multiple sclerosis using (64)cu-rituximab PET. J Nucl Med. 2017;58(11):1845ā€“51. https://doi.org/10.2967/jnumed.117.189597.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202ā€“13. https://doi.org/10.1016/j.immuni.2018.01.007.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  80. Hughes CE, Benson RA, Bedaj M, Maffia P. Antigen-presenting cells and antigen presentation in tertiary lymphoid organs. Front Immunol. 2016;7:481. https://doi.org/10.3389/fimmu.2016.00481.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Bogle G, Dunbar PR. T cell responses in lymph nodes. Wiley Interdiscip Rev Syst Biol Med. 2010;2(1):107ā€“16. https://doi.org/10.1002/wsbm.47.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  82. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. J Immunol. 2009;183(10):6095ā€“101. https://doi.org/10.4049/jimmunol.0803510.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28 receptor in T-cell activation. Immunol Today. 1990;11(6):211ā€“6. https://doi.org/10.1016/0167-5699(90)90085-n.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol. 2013;13(5):309ā€“20. https://doi.org/10.1038/nri3442.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23ā€“68. https://doi.org/10.1146/annurev.immunol.23.021704.115839.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9(4):271ā€“85. https://doi.org/10.1038/nri2526.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U. Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med. 2016;57(10):1607ā€“11. https://doi.org/10.2967/jnumed.116.173930.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Beckford Vera DR, Smith CC, Bixby LM, Glatt DM, Dunn SS, Saito R, et al. Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors. PLoS One. 2018;13(3):e0193832. https://doi.org/10.1371/journal.pone.0193832.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Freise AC, Zettlitz KA, Salazar FB, Tavare R, Tsai WK, Chatziioannou AF, et al. Immuno-PET in inflammatory bowel disease: imaging CD4-positive T cells in a murine model of colitis. J Nucl Med. 2018;59(6):980ā€“5. https://doi.org/10.2967/jnumed.117.199075.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Tavare R, McCracken MN, Zettlitz KA, Knowles SM, Salazar FB, Olafsen T, et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A. 2014;111(3):1108ā€“13. https://doi.org/10.1073/pnas.1316922111.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Tavare R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76(1):73ā€“82. https://doi.org/10.1158/0008-5472.CAN-15-1707.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Pektor S, Schloder J, Klasen B, Bausbacher N, Wagner DC, Schreckenberger M, et al. Using immuno-PET imaging to monitor kinetics of T cell-mediated inflammation and treatment efficiency in a humanized mouse model for GvHD. Eur J Nucl Med Mol Imaging. 2019; https://doi.org/10.1007/s00259-019-04507-0.

  93. San Jose E, Borroto A, Niedergang F, Alcover A, Alarcon B. Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. Immunity. 2000;12(2):161ā€“70. https://doi.org/10.1016/s1074-7613(00)80169-7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960ā€“4. https://doi.org/10.1126/science.1129139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203ā€“13. https://doi.org/10.1056/NEJMoa020177.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  96. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res. 2008;14(16):5220ā€“7. https://doi.org/10.1158/1078-0432.CCR-08-0133.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  97. Pandit-Taskar N, Postow M, Oā€™Donoghue J, Harding J, Ziolkowska M, Lyashchenko S, et al. First in human phase I imaging study with 89Zr-IAB22M2C anti CD8 minibody in patients with solid tumors. J Nucl Med. 2018;59

    Google ScholarĀ 

  98. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic immunity is required for effective cancer immunotherapy. Cell. 2017;168(3):487ā€“502.e15. https://doi.org/10.1016/j.cell.2016.12.022.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  99. Bhattacharyya M, Madden P, Henning N, Gregory S, Aid M, Martinot AJ, et al. Regulation of CD4 T cells and their effects on immunopathological inflammation following viral infection. Immunology. 2017;152(2):328ā€“43. https://doi.org/10.1111/imm.12771.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  100. Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635ā€“47. https://doi.org/10.1038/s41577-018-0044-0.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  101. Steinhoff K, Pierer M, Siegert J, Pigla U, Laub R, Hesse S, et al. Visualizing inflammation activity in rheumatoid arthritis with Tc-99 m anti-CD4-mAb fragment scintigraphy. Nucl Med Biol. 2014;41(4):350ā€“4. https://doi.org/10.1016/j.nucmedbio.2013.12.018.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Tavare R, McCracken MN, Zettlitz KA, Salazar FB, Olafsen T, Witte ON, et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 Cys-diabodies. J Nucl Med. 2015;56(8):1258ā€“64. https://doi.org/10.2967/jnumed.114.153338.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  103. Freise AC, Zettlitz KA, Salazar FB, Lu X, Tavare R, Wu AM. ImmunoPET imaging of murine CD4(+) T cells using anti-CD4 Cys-diabody: effects of protein dose on T cell function and imaging. Mol Imaging Biol. 2017;19(4):599ā€“609. https://doi.org/10.1007/s11307-016-1032-z.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  104. Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, Czerwinski DK, et al. Imaging activated T cells predicts response to cancer vaccines. J Clin Invest. 2018;128(6):2569ā€“80. https://doi.org/10.1172/JCI98509.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  105. Dancey G, Violet J, Malaroda A, Green AJ, Sharma SK, Francis R, et al. A phase I clinical trial of CHT-25 a 131I-labeled chimeric anti-CD25 antibody showing efficacy in patients with refractory lymphoma. Clin Cancer Res. 2009;15(24):7701ā€“10. https://doi.org/10.1158/1078-0432.CCR-09-1421.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Glaudemans AW, Bonanno E, Galli F, Zeebregts CJ, de Vries EF, Koole M, et al. In vivo and in vitro evidence that (9)(9)mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur J Nucl Med Mol Imaging. 2014;41(9):1710ā€“9. https://doi.org/10.1007/s00259-014-2764-0.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Hartimath SV, Draghiciu O, van de Wall S, Manuelli V, Dierckx RA, Nijman HW, et al. Noninvasive monitoring of cancer therapy induced activated T cells using [(18)F]FB-IL-2 PET imaging. Oncoimmunology. 2017;6(1):e1248014. https://doi.org/10.1080/2162402X.2016.1248014.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  108. Signore A, Chianelli M, Annovazzi A, Bonanno E, Spagnoli LG, Pozzilli P, et al. 123I-interleukin-2 scintigraphy for in vivo assessment of intestinal mononuclear cell infiltration in Crohnā€™s disease. J Nucl Med. 2000;41(2):242ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  109. Hubalewska-Dydejczyk A, Stompor T, Kalembkiewicz M, Krzanowski M, Mikolajczak R, Sowa-Staszczak A, et al. Identification of inflamed atherosclerotic plaque using 123 I-labeled interleukin-2 scintigraphy in high-risk peritoneal dialysis patients: a pilot study. Perit Dial Int. 2009;29(5):568ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Signore A, Parman A, Pozzilli P, Andreani D, Beverley PC. Detection of activated lymphocytes in endocrine pancreas of BB/W rats by injection of 123I-interleukin-2: an early sign of type 1 diabetes. Lancet. 1987;2(8558):537ā€“40. https://doi.org/10.1016/s0140-6736(87)92925-4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Signore A, Chianelli M, Ferretti E, Toscano A, Britton KE, Andreani D, et al. New approach for in vivo detection of insulitis in type I diabetes: activated lymphocyte targeting with 123I-labelled interleukin 2. Eur J Endocrinol. 1994;131(4):431ā€“7. https://doi.org/10.1530/eje.0.1310431.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  112. Rolandsson O, Stigbrand T, Riklundahlstrom K, Eary J, Greenbaum C. Accumulation of (125)iodine labeled interleukin-2 in the pancreas of NOD mice. J Autoimmun. 2001;17(4):281ā€“7. https://doi.org/10.1006/jaut.2001.0555.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Klinke DJ II. Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS One. 2008;3(1):e1374. https://doi.org/10.1371/journal.pone.0001374.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  114. Chianelli M, Mather SJ, Grossman A, Sobnak R, Fritzberg A, Britton KE, et al. 99mTc-interleukin-2 scintigraphy in normal subjects and in patients with autoimmune thyroid diseases: a feasibility study. Eur J Nucl Med Mol Imaging. 2008;35(12):2286ā€“93. https://doi.org/10.1007/s00259-008-0837-7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  115. Markovic SN, Galli F, Suman VJ, Nevala WK, Paulsen AM, Hung JC, et al. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study. Oncotarget. 2018;9(54):30268ā€“78. https://doi.org/10.18632/oncotarget.25666.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  116. Di Gialleonardo V, Signore A, Glaudemans AW, Dierckx RA, De Vries EF. N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J Nucl Med. 2012;53(5):679ā€“86. https://doi.org/10.2967/jnumed.111.091306.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  117. Flynn MJ, Hartley JA. The emerging role of anti-CD25 directed therapies as both immune modulators and targeted agents in cancer. Br J Haematol. 2017;179(1):20ā€“35. https://doi.org/10.1111/bjh.14770.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  118. Hartimath SV, Manuelli V, Zijlma R, Signore A, Nayak TK, Freimoser-Grundschober A, et al. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study. Oncotarget. 2018;9(6):7162ā€“74. https://doi.org/10.18632/oncotarget.23852.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  119. Gonzalez-Amaro R, Cortes JR, Sanchez-Madrid F, Martin P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19(10):625ā€“32. https://doi.org/10.1016/j.molmed.2013.07.006.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  120. Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47(6):946ā€“53. https://doi.org/10.1002/eji.201646837.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  121. Bredi Tako PK, Maurer A, Kneilling M, Pichler B, Sonanini D. ImmunoPET of the early activation antigen CD69 enables response prediction of cancer immunotherapies. Montreal, Canada: World Molecular Imaging Congress; 2019.

    Google ScholarĀ 

  122. Afeltra A, Galeazzi M, Ferri GM, Amoroso A, De Pita O, Porzio F, et al. Expression of CD69 antigen on synovial fluid T cells in patients with rheumatoid arthritis and other chronic synovitis. Ann Rheum Dis. 1993;52(6):457ā€“60. https://doi.org/10.1136/ard.52.6.457.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  123. Perrella O, Carrieri PB, De Mercato R, Buscaino GA. Markers of activated T lymphocytes and T cell receptor gamma/delta+ in patients with multiple sclerosis. Eur Neurol. 1993;33(2):152ā€“5. https://doi.org/10.1159/000116923.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  124. Posselt AM, Vincenti F, Bedolli M, Lantz M, Roberts JP, Hirose R. CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation. 2003;76(1):190ā€“5. https://doi.org/10.1097/01.TP.0000073614.29680.A8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  125. Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD. Science gone translational: the OX40 agonist story. Immunol Rev. 2011;244(1):218ā€“31. https://doi.org/10.1111/j.1600-065X.2011.01069.x.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  126. Peng W, Williams LJ, Xu C, Melendez B, McKenzie JA, Chen Y, et al. Anti-OX40 antibody directly enhances the function of tumor-reactive CD8(+) T cells and synergizes with PI3Kbeta inhibition in PTEN loss melanoma. Clin Cancer Res. 2019;25(21):6406ā€“16. https://doi.org/10.1158/1078-0432.CCR-19-1259.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  127. Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol. 1998;161(12):6510ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  128. Xiao Z, Mayer AT, Nobashi TW, Gambhir SS. ICOS is an indicator of T cell-mediated response to cancer immunotherapy. Cancer Res. 2020; https://doi.org/10.1158/0008-5472.CAN-19-3265.

  129. Blazar BR, Sharpe AH, Chen AI, Panoskaltsis-Mortari A, Lees C, Akiba H, et al. Ligation of OX40 (CD134) regulates graft-versus-host disease (GVHD) and graft rejection in allogeneic bone marrow transplant recipients. Blood. 2003;101(9):3741ā€“8. https://doi.org/10.1182/blood-2002-10-3048.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  130. Carboni S, Aboul-Enein F, Waltzinger C, Killeen N, Lassmann H, Pena-Rossi C. CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J Neuroimmunol. 2003;145(1ā€“2):1ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  131. Mahmood T, Yang PC. OX40L-OX40 interactions: a possible target for gastrointestinal autoimmune diseases. N Am J Med Sci. 2012;4(11):533ā€“6. https://doi.org/10.4103/1947-2714.103311.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  132. Kinnear G, Wood KJ, Fallah-Arani F, Jones ND. A diametric role for OX40 in the response of effector/memory CD4+ T cells and regulatory T cells to alloantigen. J Immunol. 2013;191(3):1465ā€“75. https://doi.org/10.4049/jimmunol.1300553.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  133. Demirci G, Li XC. Novel roles of OX40 in the allograft response. Curr Opin Organ Transplant. 2008;13(1):26ā€“30. https://doi.org/10.1097/MOT.0b013e3282f3def3.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  134. Amatore F, Gorvel L, Olive D. Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert Opin Ther Targets. 2018;22(4):343ā€“51. https://doi.org/10.1080/14728222.2018.1444753.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  135. Marinelli O, Nabissi M, Morelli MB, Torquati L, Amantini C, Santoni G. ICOS-L as a potential therapeutic target for cancer immunotherapy. Curr Protein Pept Sci. 2018;19(11):1107ā€“13. https://doi.org/10.2174/1389203719666180608093913.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  136. Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe? Front Immunol. 2016;7:304. https://doi.org/10.3389/fimmu.2016.00304.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  137. Parham P. The immune system. 4th ed. Oxford, UK: Garland Science, Taylor & Francis Group, LLC; 2015.

    Google ScholarĀ 

  138. Di Giacomo AM, Calabro L, Danielli R, Fonsatti E, Bertocci E, Pesce I, et al. Long-term survival and immunological parameters in metastatic melanoma patients who responded to ipilimumab 10 mg/kg within an expanded access programme. Cancer Immunol Immunother. 2013;62(6):1021ā€“8. https://doi.org/10.1007/s00262-013-1418-6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  139. Quemeneur L, Beloeil L, Michallet MC, Angelov G, Tomkowiak M, Revillard JP, et al. Restriction of de novo nucleotide biosynthesis interferes with clonal expansion and differentiation into effector and memory CD8 T cells. J Immunol. 2004;173(8):4945ā€“52. https://doi.org/10.4049/jimmunol.173.8.4945.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  140. Buck MD, Oā€™Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med. 2015;212(9):1345ā€“60. https://doi.org/10.1084/jem.20151159.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  141. Elzinga EH, van der Laken CJ, Comans EF, Lammertsma AA, Dijkmans BA, Voskuyl AE. 2-Deoxy-2-[F-18]fluoro-D-glucose joint uptake on positron emission tomography images: rheumatoid arthritis versus osteoarthritis. Mol Imaging Biol. 2007;9(6):357ā€“60. https://doi.org/10.1007/s11307-007-0113-4.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  142. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49(6):871ā€“8. https://doi.org/10.2967/jnumed.107.050294.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  143. Stelljes M, Hermann S, Albring J, Kohler G, Loffler M, Franzius C, et al. Clinical molecular imaging in intestinal graft-versus-host disease: mapping of disease activity, prediction, and monitoring of treatment efficiency by positron emission tomography. Blood. 2008;111(5):2909ā€“18. https://doi.org/10.1182/blood-2007-10-119164.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  144. Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med. 2009;39(1):36ā€“51. https://doi.org/10.1053/j.semnuclmed.2008.08.004.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  145. Nair-Gill E, Wiltzius SM, Wei XX, Cheng D, Riedinger M, Radu CG, et al. PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. J Clin Invest. 2010;120(6):2005ā€“15. https://doi.org/10.1172/JCI41250.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  146. Chang JM, Lee HJ, Goo JM, Lee HY, Lee JJ, Chung JK, et al. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol. 2006;7(1):57ā€“69. https://doi.org/10.3348/kjr.2006.7.1.57.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  147. Tumeh PC, Radu CG, Ribas A. PET imaging of cancer immunotherapy. J Nucl Med. 2008;49(6):865ā€“8. https://doi.org/10.2967/jnumed.108.051342.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  148. Arner ES, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther. 1995;67(2):155ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  149. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46(6):945ā€“52.

    CASĀ  PubMedĀ  Google ScholarĀ 

  150. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334ā€“6. https://doi.org/10.1038/3337.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  151. Hoeben BA, Troost EG, Span PN, van Herpen CM, Bussink J, Oyen WJ, et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med. 2013;54(4):532ā€“40. https://doi.org/10.2967/jnumed.112.105999.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  152. Aarntzen EH, Srinivas M, De Wilt JH, Jacobs JF, Lesterhuis WJ, Windhorst AD, et al. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3ā€²-fluoro-3ā€²-deoxy-thymidine ([18F]FLT) PET imaging. Proc Natl Acad Sci U S A. 2011;108(45):18396ā€“9. https://doi.org/10.1073/pnas.1113045108.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  153. Scarpelli M, Zahm C, Perlman S, McNeel DG, Jeraj R, Liu G. FLT PET/CT imaging of metastatic prostate cancer patients treated with pTVG-HP DNA vaccine and pembrolizumab. J Immunother Cancer. 2019;7(1):23. https://doi.org/10.1186/s40425-019-0516-1.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  154. Ribas A, Benz MR, Allen-Auerbach MS, Radu C, Chmielowski B, Seja E, et al. Imaging of CTLA4 blockade-induced cell replication with (18)F-FLT PET in patients with advanced melanoma treated with tremelimumab. J Nucl Med. 2010;51(3):340ā€“6. https://doi.org/10.2967/jnumed.109.070946.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  155. Schwenck JSB, Fiz F, Sonanini D, Forschner A, Eigentler T, Weide B, Martella M, Gonzalez-Menendez I, Campi C, Sambuceti G, Seith F, Quintanilla-Martinez L, Garbe C, Pfannenberg C, Rƶcken M, la Fougere C, Pichler BJ, Kneilling M. Cancer immunotherapy is accompanied by distinct metabolic patterns in primary and secondary lymphoid organs observed by non-invasive in vivo 18F-FDG-PET. Theranostics. 2019; https://doi.org/10.7150/thno.35989.

  156. Radu CG, Shu CJ, Nair-Gill E, Shelly SM, Barrio JR, Satyamurthy N, et al. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2ā€²-deoxycytidine analog. Nat Med. 2008;14(7):783ā€“8. https://doi.org/10.1038/nm1724.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  157. Shu CJ, Campbell DO, Lee JT, Tran AQ, Wengrod JC, Witte ON, et al. Novel PET probes specific for deoxycytidine kinase. J Nucl Med. 2010;51(7):1092ā€“8. https://doi.org/10.2967/jnumed.109.073361.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  158. Schwarzenberg J, Radu CG, Benz M, Fueger B, Tran AQ, Phelps ME, et al. Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway. Eur J Nucl Med Mol Imaging. 2011;38(4):711ā€“21. https://doi.org/10.1007/s00259-010-1666-z.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  159. Kim W, Le TM, Wei L, Poddar S, Bazzy J, Wang X, et al. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity. Proc Natl Acad Sci U S A. 2016;113(15):4027ā€“32. https://doi.org/10.1073/pnas.1524212113.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  160. Antonios JP, Soto H, Everson RG, Moughon DL, Wang AC, Orpilla J, et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A. 2017;114(38):10220ā€“5. https://doi.org/10.1073/pnas.1706689114.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  161. Chen BY, Ghezzi C, Villegas B, Quon A, Radu CG, Witte ON, et al. (18)F-FAC PET visualizes brain-infiltrating leukocytes in a mouse model of multiple sclerosis. J Nucl Med. 2019; https://doi.org/10.2967/jnumed.119.229351.

  162. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20(2):184ā€“91. https://doi.org/10.1093/neuonc/nox175.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  163. Zhu C, Johansson M, Permert J, Karlsson A. Enhanced cytotoxicity of nucleoside analogs by overexpression of mitochondrial deoxyguanosine kinase in cancer cell lines. J Biol Chem. 1998;273(24):14707ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  164. Rodriguez CO Jr, Mitchell BS, Ayres M, Eriksson S, Gandhi V. Arabinosylguanine is phosphorylated by both cytoplasmic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. Cancer Res. 2002;62(11):3100ā€“5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  165. Roecker AM, Stockert A, Kisor DF. Nelarabine in the treatment of refractory T-cell malignancies. Clin Med Insights Oncol. 2010;4:133ā€“41. https://doi.org/10.4137/CMO.S4364.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  166. Namavari M, Chang YF, Kusler B, Yaghoubi S, Mitchell BS, Gambhir SS. Synthesis of 2ā€²-deoxy-2ā€²-[18F]fluoro-9-beta-D-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol Imaging Biol. 2011;13(5):812ā€“8. https://doi.org/10.1007/s11307-010-0414-x.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  167. Ronald JA, Kim BS, Gowrishankar G, Namavari M, Alam IS, Dā€™Souza A, et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 2017;77(11):2893ā€“902. https://doi.org/10.1158/0008-5472.CAN-16-2953.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  168. Franc BL, Goth S, MacKenzie J, Li X, Blecha J, Lam T, et al. In vivo PET imaging of the activated immune environment in a small animal model of inflammatory arthritis. Mol Imaging. 2017;16:1536012117712638. https://doi.org/10.1177/1536012117712638.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  169. Levi J, Lam T, Goth SR, Yaghoubi S, Bates J, Ren G, et al. Imaging of activated T cells as an early predictor of immune response to anti-PD-1 therapy. Cancer Res. 2019; https://doi.org/10.1158/0008-5472.CAN-19-0267.

  170. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388ā€“400. https://doi.org/10.1038/nri3839.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  171. Larimer BM, Bloch E, Nesti S, Austin EE, Wehrenberg-Klee E, Boland G, et al. The effectiveness of checkpoint inhibitor combinations and administration timing can be measured by granzyme B PET imaging. Clin Cancer Res. 2019;25(4):1196ā€“205. https://doi.org/10.1158/1078-0432.CCR-18-2407.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  172. Cupi ML, Sarra M, Marafini I, Monteleone I, Franze E, Ortenzi A, et al. Plasma cells in the mucosa of patients with inflammatory bowel disease produce granzyme B and possess cytotoxic activities. J Immunol. 2014;192(12):6083ā€“91. https://doi.org/10.4049/jimmunol.1302238.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  173. Boschetti G, Nancey S, Moussata D, Cotte E, Francois Y, Flourie B, et al. Enrichment of circulating and mucosal cytotoxic CD8+ T cells is associated with postoperative endoscopic recurrence in patients with Crohnā€™s disease. J Crohns Colitis. 2016;10(3):338ā€“45. https://doi.org/10.1093/ecco-jcc/jjv211.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  174. Hagn M, Sontheimer K, Dahlke K, Brueggemann S, Kaltenmeier C, Beyer T, et al. Human B cells differentiate into granzyme B-secreting cytotoxic B lymphocytes upon incomplete T-cell help. Immunol Cell Biol. 2012;90(4):457ā€“67. https://doi.org/10.1038/icb.2011.64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  175. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355(6332):1428ā€“33. https://doi.org/10.1126/science.aaf1292.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  176. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12ā€“26. https://doi.org/10.1111/j.1600-065X.2009.00770.x.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  177. Lu C, Redd PS, Lee JR, Savage N, Liu K. The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology. 2016;5(12):e1247135. https://doi.org/10.1080/2162402X.2016.1247135.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  178. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining ā€˜T cell exhaustionā€™. Nat Rev Immunol. 2019;19(11):665ā€“74. https://doi.org/10.1038/s41577-019-0221-9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  179. Weber JS, Dā€™Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375ā€“84. https://doi.org/10.1016/S1470-2045(15)70076-8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  180. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521ā€“32. https://doi.org/10.1056/NEJMoa1503093.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  181. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341ā€“51. https://doi.org/10.1056/NEJMoa1805131.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  182. Hodi FS, Oā€™Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711ā€“23. https://doi.org/10.1056/NEJMoa1003466.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  183. Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2(5):e192535. https://doi.org/10.1001/jamanetworkopen.2019.2535.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  184. van de Donk PP, Kist de Ruijter L, Lub-de Hooge MN, Brouwers AH, van der Wekken AJ, Oosting SF, et al. Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics. 2020;10(4):1708ā€“18. https://doi.org/10.7150/thno.38339.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  185. Natarajan A, Mayer AT, Reeves RE, Nagamine CM, Gambhir SS. Development of novel ImmunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol. 2017;19(6):903ā€“14. https://doi.org/10.1007/s11307-017-1060-3.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  186. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866. https://doi.org/10.1371/journal.pone.0109866.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  187. Ehlerding EB, England CG, Majewski RL, Valdovinos HF, Jiang D, Liu G, et al. ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm. 2017;14(5):1782ā€“9. https://doi.org/10.1021/acs.molpharmaceut.7b00056.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  188. Ehlerding EB, Lee HJ, Jiang D, Ferreira CA, Zahm CD, Huang P, et al. Antibody and fragment-based PET imaging of CTLA-4+ T-cells in humanized mouse models. Am J Cancer Res. 2019;9(1):53ā€“63.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  189. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486ā€“99. https://doi.org/10.1038/nri3862.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  190. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852ā€“8. https://doi.org/10.1038/s41591-018-0255-8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  191. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9(1):4664. https://doi.org/10.1038/s41467-018-07131-y.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  192. Huisman M, Niemeijer AL, Windhorst B, Schuit R, Leung D, Hayes W, et al. Quantification of PD-L1 expression with [(18)F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer. J Nucl Med. 2020; https://doi.org/10.2967/jnumed.119.240895.

  193. McKnight BN, Viola-Villegas NT. (89)Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm. 2018;61(9):727ā€“38. https://doi.org/10.1002/jlcr.3605.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  194. Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91ā€“104. https://doi.org/10.1038/nri.2017.112.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  195. Boyer Z, Palmer S. Targeting immune checkpoint molecules to eliminate latent HIV. Front Immunol. 2018;9:2339. https://doi.org/10.3389/fimmu.2018.02339.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  196. Carter RH. B cells in health and disease. Mayo Clin Proc. 2006;81(3):377ā€“84. https://doi.org/10.4065/81.3.377.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  197. Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000;176:154ā€“70. https://doi.org/10.1034/j.1600-065x.2000.00607.x.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  198. Parker DC. T cell-dependent B cell activation. Annu Rev Immunol. 1993;11:331ā€“60. https://doi.org/10.1146/annurev.iy.11.040193.001555.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  199. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  200. Heyman B. Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol. 2000;18:709ā€“37. https://doi.org/10.1146/annurev.immunol.18.1.709.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  201. Seifert M, Kuppers R. Human memory B cells. Leukemia. 2016;30(12):2283ā€“92. https://doi.org/10.1038/leu.2016.226.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  202. Hausser-Kinzel S, Weber MS. The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders. Front Immunol. 2019;10:201. https://doi.org/10.3389/fimmu.2019.00201.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  203. Oā€™Neill SK, Shlomchik MJ, Glant TT, Cao Y, Doodes PD, Finnegan A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. J Immunol. 2005;174(6):3781ā€“8. https://doi.org/10.4049/jimmunol.174.6.3781.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  204. Karrar S, Cunninghame Graham DS. Abnormal B cell development in systemic lupus erythematosus: what the genetics tell us. Arthritis Rheumatol. 2018;70(4):496ā€“507. https://doi.org/10.1002/art.40396.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  205. Hampe CS. B cell in autoimmune diseases. Scientifica (Cairo). 2012; https://doi.org/10.6064/2012/215308.

  206. Browning JL. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat Rev Drug Discov. 2006;5(7):564ā€“76. https://doi.org/10.1038/nrd2085.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  207. Grillo-Lopez AJ, White CA, Varns C, Shen D, Wei A, McClure A, et al. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol. 1999;26(5 Suppl 14):66ā€“73.

    CASĀ  PubMedĀ  Google ScholarĀ 

  208. Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther. 2013;8:87ā€“100. https://doi.org/10.2147/DDDT.S41645.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  209. Marston B, Palanichamy A, Anolik JH. B cells in the pathogenesis and treatment of rheumatoid arthritis. Curr Opin Rheumatol. 2010;22(3):307ā€“15. https://doi.org/10.1097/BOR.0b013e3283369cb8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  210. Bruijnen S, Tsang ASM, Raterman H, Ramwadhdoebe T, Vugts D, van Dongen G, et al. B-cell imaging with zirconium-89 labelled rituximab PET-CT at baseline is associated with therapeutic response 24 weeks after initiation of rituximab treatment in rheumatoid arthritis patients. Arthritis Res Ther. 2016;18(1):266. https://doi.org/10.1186/s13075-016-1166-z.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  211. Jauw YW, Zijlstra JM, de Jong D, Vugts DJ, Zweegman S, Hoekstra OS, et al. Performance of 89Zr-labeled-rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One. 2017;12(1):e0169828. https://doi.org/10.1371/journal.pone.0169828.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  212. Laban KG, Kalmann R, Leguit RJ, de Keizer B. Zirconium-89-labelled rituximab PET-CT in orbital inflammatory disease. EJNMMI Res. 2019;9(1):69. https://doi.org/10.1186/s13550-019-0530-9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  213. Disanto G, Morahan JM, Barnett MH, Giovannoni G, Ramagopalan SV. The evidence for a role of B cells in multiple sclerosis. Neurology. 2012;78(11):823ā€“32. https://doi.org/10.1212/WNL.0b013e318249f6f0.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  214. Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83(1):13ā€“26. https://doi.org/10.1002/ana.25119.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  215. Arneth BM. Impact of B cells to the pathophysiology of multiple sclerosis. J Neuroinflammation. 2019;16(1):128. https://doi.org/10.1186/s12974-019-1517-1.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  216. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707ā€“17. https://doi.org/10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  217. Colombo M, Dono M, Gazzola P, Roncella S, Valetto A, Chiorazzi N, et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol. 2000;164(5):2782ā€“9. https://doi.org/10.4049/jimmunol.164.5.2782.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  218. Gasperi C, Stuve O, Hemmer B. B cell-directed therapies in multiple sclerosis. Neurodegener Dis Manag. 2016;6(1):37ā€“47. https://doi.org/10.2217/nmt.15.67.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  219. Castillo-Trivino T, Braithwaite D, Bacchetti P, Waubant E. Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One. 2013;8(7):e66308. https://doi.org/10.1371/journal.pone.0066308.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  220. Salzer J, Svenningsson R, Alping P, Novakova L, Bjorck A, Fink K, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074ā€“81. https://doi.org/10.1212/WNL.0000000000003331.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  221. Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood. 2008;112(10):4170ā€“7. https://doi.org/10.1182/blood-2008-04-149161.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  222. Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010;115(25):5191ā€“201. https://doi.org/10.1182/blood-2010-01-263533.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  223. Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, et al. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med. 1994;35(5):899ā€“908.

    CASĀ  PubMedĀ  Google ScholarĀ 

  224. Zettlitz KA, Tavare R, Knowles SM, Steward KK, Timmerman JM, Wu AM. ImmunoPET of malignant and normal B cells with (89)Zr- and (124)I-labeled obinutuzumab antibody fragments reveals differential CD20 internalization in vivo. Clin Cancer Res. 2017;23(23):7242ā€“52. https://doi.org/10.1158/1078-0432.CCR-17-0855.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  225. Witzig TE. Efficacy and safety of 90Y ibritumomab tiuxetan (Zevalin) radioimmunotherapy for non-Hodgkinā€™s lymphoma. Semin Oncol. 2003;30(6 Suppl 17):11ā€“6. https://doi.org/10.1053/j.seminoncol.2003.10.007.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  226. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57(1):27ā€“33. https://doi.org/10.2967/jnumed.115.162024.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  227. Witzig TE, White CA, Gordon LI, Wiseman GA, Emmanouilides C, Murray JL, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-Hodgkinā€™s lymphoma. J Clin Oncol. 2003;21(7):1263ā€“70. https://doi.org/10.1200/JCO.2003.08.043.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  228. Krasniqi A, Dā€™Huyvetter M, Xavier C, Van der Jeught K, Muyldermans S, Van Der Heyden J, et al. Theranostic radiolabeled anti-CD20 sdAb for targeted radionuclide therapy of non-Hodgkin lymphoma. Mol Cancer Ther. 2017;16(12):2828ā€“39. https://doi.org/10.1158/1535-7163.MCT-17-0554.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  229. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165ā€“77. https://doi.org/10.1158/0008-5472.CAN-11-2994.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  230. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. https://doi.org/10.1186/2162-3619-1-36.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  231. Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stuve O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018;11:1756286418761697. https://doi.org/10.1177/1756286418761697.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  232. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. https://doi.org/10.1126/scitranslmed.3002842.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  233. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017ā€“23. https://doi.org/10.1182/blood-2014-12-580068.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  234. Agius MA, Klodowska-Duda G, Maciejowski M, Potemkowski A, Li J, Patra K, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler. 2019;25(2):235ā€“45. https://doi.org/10.1177/1352458517740641.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  235. Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352ā€“63. https://doi.org/10.1016/S0140-6736(19)31817-3.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  236. Schuh E, Berer K, Mulazzani M, Feil K, Meinl I, Lahm H, et al. Features of human CD3+CD20+ T cells. J Immunol. 2016;197(4):1111ā€“7. https://doi.org/10.4049/jimmunol.1600089.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  237. Stevens M, Cropper H, Jackson I, Chaney A, Lechtenberg K, Buckwalter M, James ML. Radiolabeling and pre-clinical evaluation of a first-in-class CD19 PET tracer for imaging B cells in multiple sclerosis. Reston, VA: Society of Nuclear Medicine and Molecular Imaging; 2019.

    Google ScholarĀ 

  238. Barthelmes J, Tafferner N, Kurz J, de Bruin N, Parnham MJ, Geisslinger G, et al. Induction of experimental autoimmune encephalomyelitis in mice and evaluation of the disease-dependent distribution of immune cells in various tissues. J Vis Exp. 2016;(111):53933. https://doi.org/10.3791/53933.

  239. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436(7051):709ā€“13. https://doi.org/10.1038/nature03847.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  240. Ali AK, Nandagopal N, Lee SH. IL-15-PI3K-AKT-mTOR: a critical pathway in the life journey of natural killer cells. Front Immunol. 2015;6:355. https://doi.org/10.3389/fimmu.2015.00355.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  241. Geary CD, Sun JC. Memory responses of natural killer cells. Semin Immunol. 2017;31:11ā€“9. https://doi.org/10.1016/j.smim.2017.08.012.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  242. Terren I, Orrantia A, Mikelez-Alonso I, Vitalle J, Zenarruzabeitia O, Borrego F. NK cell-based immunotherapy in renal cell carcinoma. Cancers (Basel). 2020;12(2):316. https://doi.org/10.3390/cancers12020316.

    ArticleĀ  CASĀ  Google ScholarĀ 

  243. Habif G, Crinier A, Andre P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16(5):415ā€“22. https://doi.org/10.1038/s41423-019-0224-2.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  244. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054ā€“66. https://doi.org/10.1016/j.cell.2018.07.017.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  245. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cellsā€”a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145ā€“9. https://doi.org/10.1038/nri3365.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  246. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508(7496):397ā€“401. https://doi.org/10.1038/nature13047.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  247. Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, Loh CY, et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 2017;46(1):148ā€“61. https://doi.org/10.1016/j.immuni.2016.11.005.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  248. Cichocki F, Grzywacz B, Miller JS. Human NK cell development: one road or many? Front Immunol. 2019;10:2078. https://doi.org/10.3389/fimmu.2019.02078.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  249. Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD, et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol. 2007;179(1):89ā€“94. https://doi.org/10.4049/jimmunol.179.1.89.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  250. Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the immune system: more than a marker for cytotoxicity? Front Immunol. 2017;8:892. https://doi.org/10.3389/fimmu.2017.00892.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  251. Minetto P, Guolo F, Pesce S, Greppi M, Obino V, Ferretti E, et al. Harnessing NK cells for cancer treatment. Front Immunol. 2019;10:2836. https://doi.org/10.3389/fimmu.2019.02836.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  252. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994;8(4):652ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  253. Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, et al. NK-92: an ā€˜off-the-shelf therapeuticā€™ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016;65(4):485ā€“92. https://doi.org/10.1007/s00262-015-1761-x.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  254. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545ā€“53. https://doi.org/10.1056/NEJMoa1910607.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  255. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368. https://doi.org/10.3389/fimmu.2015.00368.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  256. Chew HY, De Lima PO, Gonzalez Cruz JL, Banushi B, Echejoh G, Hu L, et al. Endocytosis inhibition in humans to improve responses to ADCC-mediating antibodies. Cell. 2020;180(5):895ā€“914.e27. https://doi.org/10.1016/j.cell.2020.02.019.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  257. Tang J, Pearce L, Oā€™Donnell-Tormey J, Hubbard-Lucey VM. Trends in the global immuno-oncology landscape. Nat Rev Drug Discov. 2018;17(12):922. https://doi.org/10.1038/nrd.2018.202.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  258. Shapovalova M, Pyper SR, Moriarity BS, LeBeau AM. The molecular imaging of natural killer cells. Mol Imaging. 2018;17:1536012118794816. https://doi.org/10.1177/1536012118794816.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  259. Marincola FM, Drucker BJ, Keeling CA, Siao DY, Starnes HF Jr, Goodwin DA, et al. The in vivo distribution of human peripheral blood lymphocytes and lymphokine-activated killer cells adoptively transferred in human pancreatic cancer-bearing nude mice. Surgery. 1989;105(1):79ā€“85.

    CASĀ  PubMedĀ  Google ScholarĀ 

  260. Sato N, Stringaris K, Davidson-Moncada JK, Reger R, Adler SS, Dunbar C, et al. In vivo tracking of adoptively transferred natural killer cells in rhesus macaques using (89)zirconium-oxine cell labeling and PET imaging. Clin Cancer Res. 2020; https://doi.org/10.1158/1078-0432.CCR-19-2897.

  261. Katano I, Nishime C, Ito R, Kamisako T, Mizusawa T, Ka Y, et al. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15-transgenic NOG mouse. Sci Rep. 2017;7(1):17230. https://doi.org/10.1038/s41598-017-17442-7.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  262. Galli F, Rapisarda AS, Stabile H, Malviya G, Manni I, Bonanno E, et al. In vivo imaging of natural killer cell trafficking in tumors. J Nucl Med. 2015;56(10):1575ā€“80. https://doi.org/10.2967/jnumed.114.152918.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  263. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol. 2012;13(10):1000ā€“9. https://doi.org/10.1038/ni.2395.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  264. Shaffer T, Gambhir SS, Aalipour A, Schurch C. PET imaging of the natural killer cell activation receptor NKp30. J Nucl Med. 2020; https://doi.org/10.2967/jnumed.119.233163.

  265. Shaffer TAA, Gambhir SS. PET imaging of activation and inhibition natural killer cell receptors. Montreal, Canada: World Molecular Imaging Congress; 2019.

    Google ScholarĀ 

  266. Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, et al. Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol. 2006;176(12):7511ā€“24. https://doi.org/10.4049/jimmunol.176.12.7511.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  267. Schleypen JS, Baur N, Kammerer R, Nelson PJ, Rohrmann K, Grone EF, et al. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res. 2006;12(3 Pt 1):718ā€“25. https://doi.org/10.1158/1078-0432.CCR-05-0857.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  268. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell. 2017;169(4):750ā€“65.e17. https://doi.org/10.1016/j.cell.2017.04.014.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  269. Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM. Pretargeted imaging and therapy. J Nucl Med. 2017;58(10):1553ā€“9. https://doi.org/10.2967/jnumed.117.189944.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  270. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3ā€“12. https://doi.org/10.2967/jnumed.116.184028.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  271. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60(3):299ā€“303. https://doi.org/10.2967/jnumed.119.226498.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  272. Vandenberghe S, Mikhaylova E, Dā€™Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys. 2016;3(1):3. https://doi.org/10.1186/s40658-016-0138-3.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  273. Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clin Transl Imaging. 2019;7(2):139ā€“47.

    ArticleĀ  Google ScholarĀ 

  274. Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2013;2(10):e25771. https://doi.org/10.4161/onci.25771.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  275. Liu Q, Johnson EM, Lam RK, Wang Q, Bo Ye H, Wilson EN, et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol. 2019;20(8):1023ā€“34. https://doi.org/10.1038/s41590-019-0421-2.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  276. Nigam S, McCarl L, Kumar R, Edinger RS, Kurland BF, Anderson CJ, et al. Preclinical ImmunoPET imaging of glioblastoma-infiltrating myeloid cells using zirconium-89 labeled anti-CD11b antibody. Mol Imaging Biol. 2019; https://doi.org/10.1007/s11307-019-01427-1.

  277. Andreyev A, Celler A. Dual-isotope PET using positron-gamma emitters. Phys Med Biol. 2011;56(14):4539ā€“56. https://doi.org/10.1088/0031-9155/56/14/020.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  278. Fukuchi T, Okauchi T, Shigeta M, Yamamoto S, Watanabe Y, Enomoto S. Positron emission tomography with additional gamma-ray detectors for multiple-tracer imaging. Med Phys. 2017;44(6):2257ā€“66. https://doi.org/10.1002/mp.12149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  279. Vera DRB, Smith CC, Bixby LM, Glatt DM, Dunn SS, Saito R, et al. Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors. PLoS One. 2018;13(3):e0193832. https://doi.org/10.1371/journal.pone.0193832.

    ArticleĀ  CASĀ  Google ScholarĀ 

  280. Seo JW, Tavare R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, et al. CD8(+) T-cell density imaging with Cu-64-labeled Cys-diabody informs immunotherapy protocols. Clin Cancer Res. 2018;24(20):4976ā€“87. https://doi.org/10.1158/1078-0432.Ccr-18-0261.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  281. Olafsen T, Torgov M, Zhang GG, Romero J, Zampila C, Marchioni F, et al. Pet imaging of cytotoxic human T cells using an 89Zr-labeled anti-CD8 minibody. J Immunother Cancer. 2015;3(Suppl 2):P388. https://doi.org/10.1186/2051-1426-3-S2-P388.

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  282. Mayer KE, Mall S, Yusufi N, Gosmann D, Steiger K, Russelli L, et al. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Theranostics. 2018;8(21):6070ā€“87. https://doi.org/10.7150/thno.27275.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  283. Hettich M, Braun F, Bartholoma MD, Schirmbeck R, Niedermann G. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629ā€“40. https://doi.org/10.7150/thno.15253.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  284. England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58(1):162ā€“8. https://doi.org/10.2967/jnumed.116.177857.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  285. England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, et al. (89)Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging. 2018;45(1):110ā€“20. https://doi.org/10.1007/s00259-017-3803-4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  286. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. Cu-64-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866. https://doi.org/10.1371/journal.pone.0109866.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  287. Muylle K, Flamen P, Vugts DJ, Guiot T, Ghanem G, Meuleman N, et al. Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur J Nucl Med Mol Imaging. 2015;42(8):1304ā€“14. https://doi.org/10.1007/s00259-015-3025-6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  288. Natarajan A, Gambhir SS. Radiation dosimetry study of [(89)Zr]rituximab tracer for clinical translation of B cell NHL imaging using positron emission tomography. Mol Imaging Biol. 2015;17(4):539ā€“47. https://doi.org/10.1007/s11307-014-0810-8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  289. Olafsen T, Betting D, Kenanova VE, Salazar FB, Clarke P, Said J, et al. Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas. J Nucl Med. 2009;50(9):1500ā€“8. https://doi.org/10.2967/jnumed.108.060426.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

We thank Drs. Federico Simonetta, Carmel T. Chan, Weiyu ChenĀ and Nusrat S. Alam for valuable discussions and for reviewing the manuscript. Additionally we are grateful to Jim Strommer and Judy Schwimmer for their support with figures. We would also like to acknowledge funding support from the Ben and Catherine Ivy Foundation, Canary FoundationĀ and National Cancer Institute (R01 CA201719-05). Finally, we are thankful to our colleagues in the imaging community that contributed to the development and translation of the strategies discussed in this chapter.Ā This work is dedicated to the memory of my father Dr. Mohammed Shamsul Alam, my aunt Dr Dilara Huq and our mentor Professor Sanjiv Sam Gambhir; for their deep commitment to humanity, tireless efforts to serve others and above all for their passion and wonder for science and medicine.

Review Criteria: We have intentionally chosen to highlight studies that have been reported within the last decade with an emphasis on those that have been clinically evaluated or demonstrate strong translational potential. Pubmed was searched for relevant publications up until June 2020. ClinicalTrials.gov was queried for trials pertaining to the probes discussed. We chose to focus on endogenous imaging biomarkers, specifically associated with lymphocytes, rather than general markers associated with the inflammatory response that are upregulated on vasculature and stroma. We recognize that there are many valuable studies in the field that were not within the scope of this discussion and have cited references for readers who are interested in those areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S. Gambhir .

Editor information

Editors and Affiliations

Ethics declarations

Dr Gambhir was the founder and equity holder of CellSight Inc. that develops and translates strategies for imaging cell trafficking/transplantation.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, I.S., Shaffer, T.M., Gambhir, S.S. (2022). Nuclear Imaging of Endogenous Markers of Lymphocyte Response. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics