Skip to main content

Bottom Simulating Reflections Below the Blake Ridge, Western North Atlantic Margin

  • Chapter
  • First Online:
World Atlas of Submarine Gas Hydrates in Continental Margins

Abstract

The Blake Ridge is a large (~100,000 km2), well-studied gas hydrate province located off the southeastern coast of the US. When it was found, it was considered one of the finest sites for studying marine gas hydrate systems on passive margins due to its perceived geologic simplicity and ubiquitous bottom simulating reflectors (BSRs). The past 50 years of coring, drilling, seismic- and submersible-surveys reveal that the gas hydrate system at Blake Ridge is surprisingly complex. Evidence for a dynamic phase boundary includes seismic indicators of active gas chimneys, subsurface overpressures, anomalously shallow BSRs, and evidence for past and present methane migration to the seafloor, some of which sustains chemosynthetic communities at the Blake Ridge Diapir. The drivers of this dynamic gas hydrate system at Blake Ridge are not fully understood, but may be associated with bottom water temperature changes, ocean current variability, continued gas formation and migration and ongoing ocean-earth-climate interactions. Despite 50 years of research, controls on the gas hydrate phase boundary below Blake Ridge remains poorly constrained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brothers LL, Van Dover CL, German CR et al (2013) Evidence for extensive methane venting on the southeastern US Atlantic margin. Geology 41(7):807–810

    Article  Google Scholar 

  • Bryan GM (1974) In situ indications of gas hydrate. In: Kaplan I (ed) Natural gases in marine sediments. Springer, Boston, pp 299–308

    Chapter  Google Scholar 

  • Chamley H, Debrabant P, Candillier AM et al (1983) 13. Clay mineralogical and inorganic geochemical stratigraphy of Blake-Bahama Basin since the Callovian, Site 534, Deep Sea Drilling Project Leg 761. Init Repts DSDP 76:437–451

    Google Scholar 

  • Collett TS, Ladd J (2000) Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrically resistivity log data. In: Proceedings of the ocean drilling program, scientific results, Texas A&M university, college station, TX, USA 164

    Google Scholar 

  • Dickens GR, Paull CK, Wallace P (1997) Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nat 385(6615):426–428

    Google Scholar 

  • Dillon WP, Danforth WW, Hutchinson DR et al (1998) Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern United States. In: Henriet JP, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Lond Spec Publ 137:293–302

    Google Scholar 

  • Dillon WP, Lee MW (1993) Gas hydrates on the Atlantic continental margin of the US. US Geol Surv Prof Pap 1570:313

    Google Scholar 

  • Dillon WP, Popenoe P, Grow JA et al (1982) Growth faulting and salt diapirism: their relationship and control in the Carolina Trough, Eastern North America: rifted margins: field investigations of margin structure and stratigraphy. In: Watkins JS, Drake CL (eds) Studies in continental margin geology. AAPG Mem 34:21–46

    Google Scholar 

  • Ewing J, Ewing M, Leyden R (1966) Seismic-profiler survey of Blake Plateau. AAPG Bulletin 50(9):1948–1971

    Google Scholar 

  • Ewing JI, Hollister CH (1972) Regional aspects of deep-sea drilling in the western North Atlantic. In: Ewing JI, Hollister CH et al (eds) Init Repts DSDP 11. US Govt Printing Office, Washington DC, pp 951–973

    Google Scholar 

  • Flemings PB, Liu X, Winters WJ (2003) Critical pressure and multiphase flow in Blake Ridge gas hydrates. Geology 31(12):1057–1060

    Article  Google Scholar 

  • Frederick JM, Buffett BA (2013) Use of cosmogenic 129I to constrain numerical models of fluid flow in marine sediments: application to the Blake Ridge Hydrate Province. Geochem Geophys 14(5):1343–1357

    Article  Google Scholar 

  • Gorman AR, Holbrook WS, Hornbach MJ et al (2002) Migration of methane gas through the hydrate stability zone in a low-flux hydrate province. Geol 30(4):327–330

    Article  Google Scholar 

  • Ghosh R, Sain K, Ojha M (2010) Estimating the amount of gas-hydrate using effective medium theory: a case study in the Blake Ridge. Mar Geophys Res 31(1–2):29–37

    Article  Google Scholar 

  • Grow JA, Markl RG (1977) IPOD-USGS multichannel seismic reflection profile from Cape Hatteras to the Mid-Atlantic Ridge. Geology 5(10):625–630

    Article  Google Scholar 

  • Heezen BC, Hollister C (1964) Deep-sea current evidence from abyssal sediments. Marine Geol 1(2):141–174

    Google Scholar 

  • Heezen BC, Hollister CD, Ruddiman WF (1966) Shaping of the continental rise by deep geostrophic contour currents. Sci 152(3721):502–508

    Google Scholar 

  • Hill JC, Brothers DS, Hornbach MJ et al (2019) Subsurface controls on the development of the Cape Fear Slide Complex, central US Atlantic Margin. Geol Soc Lond Spec Publ 477(1):169–181

    Google Scholar 

  • Hillman JI, Cook AE, Sawyer DE et al (2017) The character and amplitude of ‘discontinuous’ bottom-simulating reflections in marine seismic data. Earth Planet Sci Lett 459:157–169

    Article  Google Scholar 

  • Holbrook WS, Hoskins H, Wood WT, Stephen RA, Lizarralde D (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Sci 273(5283):840–1843

    Google Scholar 

  • Holbrook WS (2001) Seismic studies of the Blake Ridge: implications for hydrate distribution, methane expulsion, and free gas dynamics. Geophys Monogr Ser 124:235–256

    Google Scholar 

  • Holbrook WS, Lizarralde D, Pecher IA et al (2002) Escape of methane gas through sediment waves in a large methane hydrate province. Geology 30(5):467–470

    Article  Google Scholar 

  • Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizarralde D, Pecher I (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophys 68(1):92–100

    Article  Google Scholar 

  • Hornbach MJ, Ruppel C, Saffer DM et al (2005) Coupled geophysical constraints on heat flow and fluid flux at a salt diapir. Geophys Res Lett 32(24)

    Google Scholar 

  • Hornbach MJ, Ruppel C, Van Dover CL (2007a) Three‐dimensional structure of fluid conduits sustaining an active deep marine cold seep. Geophys Res Lett 34(5)

    Google Scholar 

  • Hornbach MJ, Lavier LL, Ruppel CD (2007b) Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, US Atlantic margin. Geochem Geophys 8(12)

    Google Scholar 

  • Hornbach MJ, Saffer DM, Holbrook WS et al (2008) Three‐dimensional seismic imaging of the Blake Ridge methane hydrate province: evidence for large, concentrated zones of gas hydrate and morphologically driven advection. J Geophys Res Solid Earth 113(B7)

    Google Scholar 

  • Klitgord KD, Grow JA (1980) Jurassic seismic stratigraphy and basement structure of western Atlantic magnetic quiet zone. Am Assoc Pet Geol Bull 64(10):1658–1680

    Google Scholar 

  • Markl RG, Bryan GM (1983) Stratigraphic evolution of Blake outer ridge. Am Assoc Pet Geol Bull 67(4):666–683

    Google Scholar 

  • Party SS (1972) Sites 102-103-104—Blake-Bahama Outer Ridge (northern end). In: Hollister CD, Ewing JI et al (eds) Init Rep DSDP 11:135–218. https://doi.org/10.2973/dsdp.proc.11.105.1972

  • Party SS (1996) Site 995. In: Paull CK, Matsumoto R, Wallace PJ et al (eds) Proc ODP, Init Rep DSDP 164, College Station, TX, pp 175–240. https://doi.org/10.2973/odp.proc.ir.164.108.1996

  • Paull CK, Ussler W III, Borowski WS et al (1995) Methane-rich plumes on the Carolina continental rise: associations with gas hydrates. Geology 23(1):89–92

    Article  Google Scholar 

  • Phrampus BJ, Hornbach MJ (2012) Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 490(7421):527–530

    Article  Google Scholar 

  • Robinson CA, Bernhard JM, Levin LA et al (2004) Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). Mar Ecol 25(4):313–336

    Article  Google Scholar 

  • Runyan T, Wood W, Palmsten M et al (2016) A machine learning approach to quantifying geologic similarities between sites of gas hydrate accumulation. AGUFM 2016:OS51B-2048

    Google Scholar 

  • Ruppel C (1997) Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the US Atlantic passive margin. Geology 25(8):699–702

    Article  Google Scholar 

  • Ruppel C, Von Herzen RP, Bonneville A (1995) Heat flux through an old (~175 Ma) passive margin: offshore southeastern United States. J Geophys Res Solid Earth 100(B10):20037–20057

    Google Scholar 

  • Schmuck EA, Paull CK (1993) Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide. Geo-Mar Lett 13(3):145–152

    Article  Google Scholar 

  • Shipley TH, Houston MH, Buffler RT, Shaub FJ, Mcmillen KJ, LAOD JW, Worzel JL (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bulletin 63(12):2204–2213

    Google Scholar 

  • Skarke A, Ruppel C, Kodis M et al (2014) Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat Geosci 7(9):657–661

    Article  Google Scholar 

  • Stoll RD, Ewing J, Bryan GM (1971) Anomalous wave velocities in sediments containing gas hydrates. J Geophys Res 76(8):2090–2094

    Article  Google Scholar 

  • Taylor MH, Dillon WP, Pecher IA (2000) Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Mar Geol 164(1–2):79–89

    Article  Google Scholar 

  • Tucholke BE, Bryan GM, Ewing JI (1977) Gas-hydrate horizons detected in seismic-profiler data from the western North Atlantic. Am Assoc Pet Geol Bull 61(5):698–707

    Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM et al (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Res Part I Oceanog Res Pap 50(2):281–300

    Article  Google Scholar 

  • Wagner JK, McEntee MH, Brothers LL et al (2013) Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field. Deep Sea Res Part II Top Stud Oceanogr 92:183–188

    Article  Google Scholar 

  • Wood WT, Ruppel C (2000) Seismic and thermal investigations of the blake ridge gas hydrate area: a synthesis. Proceedings of the ocean drilling program. Scientific results. Ocean drilling program pp 253–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Hornbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hornbach, M.J. (2022). Bottom Simulating Reflections Below the Blake Ridge, Western North Atlantic Margin. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_10

Download citation

Publish with us

Policies and ethics