Skip to main content

Effect of Vorticity on Peregrine Breather for Interfacial Waves of Finite Amplitude

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics

Part of the book series: NODYCON Conference Proceedings Series ((NCPS))

  • 808 Accesses

Abstract

A third-order nonlinear Schrödinger equation (NLSE) in one space variable has been established for a finite amplitude wave propagating along the interface of the superposition of two finite depth fluids under the circumstance of a basic current shear. Starting from this two-dimensional (1+1) NLSE, we have discussed the stability analysis for a uniform wave train, considering both the cases of air–water interface and the Boussinesq approximation. Later, the effect of shear current on Peregrine breather for both types of aforesaid interfaces has been portrayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. McLean, Y.C. Ma, D.U. Martin, P.G. Saffman, H.C. Yuen, Three-dimensional instability of finite-amplitude water waves. Phys. Rev. Lett. 46, 817 (1981). https://doi.org/10.1103/PhysRevLett.46.817

    Article  MathSciNet  Google Scholar 

  2. H.C. Yuen, Nonlinear dynamics of interfacial waves. Phys. D Nonlinear Phenomena 12(1–3), 71–82 (1984). https://doi.org/10.1016/0167-2789(84)90515-3

    Article  Google Scholar 

  3. R. Grimshaw, D. Pullin, Stability of finite-amplitude interfacial waves. Part 1. Modulational instability for small-amplitude waves. J. Fluid Mech. 160, 297–315 (1985). https://doi.org/10.1017/S0022112085003494

  4. D. Pullin, R. Grimshaw, Stability of finite-amplitude interfacial waves. Part 3. The effect of basic current shear for one-dimensional instabilities. J. Fluid Mech. 172, 277–306 (1986). https://doi.org/10.1017/S002211208600174X

  5. A.K. Dhar, K.P. Das, Stability analysis from fourth order evolution equation for small but finite amplitude interfacial waves in the presence of a basic current shear. J. Austral. Math. Soc. Ser B. Appl. Math. 35(3), 348–365 (1994). https://doi.org/10.1017/S0334270000009346

    Article  MathSciNet  Google Scholar 

  6. W. Choi, Nonlinear surface waves interacting with a linear shear current. Math. Comput. Simul. 80(1), 29–36 (2009). https://doi.org/10.1016/j.matcom.2009.06.021

    Article  MathSciNet  Google Scholar 

  7. O.G. Nwogu, Interaction of finite-amplitude waves with vertically sheared current fields. J. Fluid Mech. 627, 179–213 (2009). https://doi.org/10.1017/S0022112009005850

    Article  MathSciNet  Google Scholar 

  8. D.H. Peregrine, Water waves nonlinear Schrödinger equations and their solutions. Austral. Math. Soc. Ser. B. 25, 16 (1983). https://doi.org/10.1017/S0334270000003891

    Article  MathSciNet  Google Scholar 

  9. B. Liao, G. Dong, Y. Ma, J.L. Gao, Linear-shear-current modified Schrödinger equation for gravity waves in finite water depth. Phys. Rev. E 96, 043111 (2017). https://doi.org/10.1103/PhysRevE.96.043111

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

The coefficients appearing in Eq. (21) are

$$\displaystyle \begin{aligned} \alpha&=\frac{1}{2}\left(\frac{dc_g}{dk} \right)_{k=1} =\frac{1}{f_\sigma}[(\sigma_1+r\sigma_2)c_g^2\\&\quad + \{ 2\sigma h_1(1-\sigma_1^2)+2\sigma rh_2(1-\sigma_2^2)-(\omega_2-r\omega_1)\delta_1 \}c_g & \\ &\quad -\sigma^2\{ \sigma_1h_1^2(1-\sigma_1^2)+r\sigma_2h_2^2(1-\sigma_2^2) \}\\&\quad - \{ (\omega_2-r\omega_1)\sigma+(1-r) \}(\delta_3-\delta_4) -(1-r)\delta_1 ], \end{aligned} $$
$$\displaystyle \begin{aligned}\mu&=\frac{1}{2\sigma_1^3\sigma_2^3f_\sigma}\left[ \frac{ 2\big\{ \sigma^2\sigma_1^2(1-\sigma_2^2)-r\sigma^2\sigma_2^2(1-\sigma_1^2)+ \frac{\sigma_2\sigma_1^2\delta_5(c_g-h_2\omega_2)}{h_2}-\frac{r\sigma_1\sigma_2^2\delta_6(c_g+h_1\omega_1)}{h_1} \big\}^2 }{ \frac{c_g^2}{h_2}+\frac{rc_g^2}{h_1}-\delta_7 } \right.\\ & \quad + \frac{ \{ \sigma^2\sigma_1^2(3-\sigma_2^2)-r\sigma^2\sigma_2^2(3-\sigma_1^2)-\omega_2\sigma_1^2\sigma_2(\delta_5+\sigma+\sigma\sigma_2^2)-r\omega_1(\delta_6+\sigma+\sigma\sigma_1^2) \}^2 }{\sigma^2\sigma_2+r\sigma^2\sigma_1} \\ &\quad -\frac{2\sigma_1^2\sigma_2^2(h_1\delta_5^2\sigma_1^2+rh_2\delta_6^2\sigma_2^2)}{h_1h_2}-\sigma_1\sigma_2\{ 4\sigma^2\sigma_1^3(1-2\sigma_2^2)+4r\sigma^2\sigma_2^3(1-2\sigma_1^2) \\ &\quad -\omega_2\sigma_2\sigma_1^3( 4\sigma(1-\sigma_2^2)-\omega_2\sigma_2(1+\sigma_2^2) ) \\&\quad +r\omega_1\sigma_1\sigma_2^3( 4\sigma(1-\sigma_1^2)+\omega_1\sigma_1(1+\sigma_1^2) ) \} ], & \end{aligned} $$
$$\displaystyle \begin{aligned} \delta_1&=\sigma_1 h_2(1-\sigma_2^2)+\sigma_2 h_1(1-\sigma_1^2), ~~~ \delta_2=\sigma_1+ h_1(1-\sigma_1^2),\\ \delta_3&=h_1h_2(1-\sigma_1^2)(1-\sigma_1^2), \end{aligned} $$
$$\displaystyle \begin{aligned} \delta_4&=\sigma_1\sigma_2\{ h_1^2(1-\sigma_1^2)+h_2^2(1-\sigma_2^2) \}, \delta_5=2\sigma-\sigma_2\omega_2,\delta_6=2\sigma+\sigma_1\omega_1, \\ \delta_7&=1-r+(\omega_2-r\omega_1)c_g. \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manna, S., Dhar, A.K. (2022). Effect of Vorticity on Peregrine Breather for Interfacial Waves of Finite Amplitude. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81170-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81170-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81169-3

  • Online ISBN: 978-3-030-81170-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics