Skip to main content

External Electric Field Effect on Interband Optical Absorption and Photoluminescence in Vertically Coupled Cylindrical Quantum Dots with Modified Pöschl-Teller Potential

  • Conference paper
  • First Online:
International Youth Conference on Electronics, Telecommunications and Information Technologies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 268))

  • 576 Accesses

Abstract

A theoretical study of external electric field effect on the interband optical absorption and photoluminescence spectra of vertically coupled cylindrical quantum dots with modified Pöschl-Teller potential has been carried out. Interband optical absorption and photoluminescence plots have been obtained at different temperatures and external electric field strengths. It is shown that the application of an external electric field separates the charge carriers spatially, which in turn causes a blue shift of the absorption and photoluminescence peaks and a reduction of their peak values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Zhang, H. Li, K. Wang, G. Cao, M. Xiao, G. Guo, Qubits based on semiconductor quantum dots. Chin. Phys. B 27, 020305 (2018). https://doi.org/10.1088/1674-1056/27/2/020305

    Article  ADS  Google Scholar 

  2. L. Fedichkin, M. Yanchenko, K. Valiev, Coherent charge qubits based on GaAs quantum dots with a built-in barrier. Nanotechnology 11, 387–391 (2000). https://doi.org/10.1088/0957-4484/11/4/339

    Article  ADS  Google Scholar 

  3. C. Cornet, A. Schliwa, J. Even, F. Doré, C. Celebi, A. Létoublon, E. Macé, C. Paranthoën, A. Simon, P. Koenraad, N. Bertru, D. Bimberg, S. Loualiche, Electronic and optical properties of InAs∕InP quantum dots on InP(100) and InP(311)B substrates: theory and experiment. Phys. Rev. B. 74 (2006). https://doi.org/10.1103/PhysRevB.74.035312

  4. Z. Zeng, C. Garoufalis, S. Baskoutas, G. Bester, Electronic and optical properties of ZnO quantum dots under hydrostatic pressure. Phys. Rev. B. 87 (2013). https://doi.org/10.1103/PhysRevB.87.125302

  5. D. Hayrapetyan, E. Kazaryan, H. Tevosyan, Optical properties of spherical quantum dot with modified Pöschl-Teller potential. Superlattices Microstruct. 64, 204–212 (2013). https://doi.org/10.1016/j.spmi.2013.09.002

    Article  ADS  Google Scholar 

  6. R. Singh, G. Bester, Effects of atomic ordering on the electronic and optical properties of self-assembled InxGa1−xAs/GaAs semiconductor quantum dots. Phys. Rev. B. 84 (2011). https://doi.org/10.1103/PhysRevB.84.241402

  7. L. Li, D. Moldovan, W. Xu, F. Peeters, Electric-field and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots. Nanotechnology 28, 085702 (2017). https://doi.org/10.1088/1361-6528/aa55e8

    Article  ADS  Google Scholar 

  8. İ Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 (2008). https://doi.org/10.1063/1.2904860

    Article  ADS  Google Scholar 

  9. D. Baghdasaryan, D. Hayrapetyan, V. Harutyunyan, Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field. Physica B 510, 33–37 (2017). https://doi.org/10.1016/j.physb.2017.01.017

    Article  ADS  Google Scholar 

  10. S. Baskoutas, E. Paspalakis, A. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. J. Phys. Condens. Matter 19, 395024 (2007). https://doi.org/10.1088/0953-8984/19/39/395024

    Article  Google Scholar 

  11. E. Kadantsev, P. Hawrylak, Theory of exciton fine structure in semiconductor quantum dots: quantum dot anisotropy and lateral electric field. Phys. Rev. B. 81. https://doi.org/10.1103/PhysRevB.81.045311

  12. M. Bayer, Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001). https://doi.org/10.1126/science.291.5503.451

    Article  ADS  Google Scholar 

  13. C. Kagan, C. Murray, Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015). https://doi.org/10.1038/nnano.2015.247

    Article  ADS  Google Scholar 

  14. M. Frederick, V. Amin, E. Weiss, Optical properties of strongly coupled quantum dot-ligand systems. J. Phys. Chem. Lett. 4, 634–640 (2013). https://doi.org/10.1021/jz301905n

    Article  Google Scholar 

  15. D. Hayrapetyan, S. Amirkhanyan, E. Kazaryan, H. Sarkisyan, Effect of hydrostatic pressure on diamagnetic susceptibility of hydrogenic donor impurity in core/shell/shell spherical quantum dot with Kratzer confining potential. Physica E 84, 367–371 (2016). https://doi.org/10.1016/j.physe.2016.07.028

    Article  ADS  Google Scholar 

  16. D. Hayrapetyan, E. Kazaryan, T. Kotanjyan, H. Tevosyan, Exciton states and interband absorption of cylindrical quantum dot with Morse confining potential. Superlattices Microstruct. 78, 40–49 (2015). https://doi.org/10.1016/j.spmi.2014.11.025

    Article  ADS  Google Scholar 

  17. D. Hayrapetyan, E. Kazaryan, H. Tevosyan, Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. (Armenian Academy of Sciences) 49, 119–122 (2014). https://doi.org/10.3103/S1068337214030062

    Article  ADS  Google Scholar 

  18. D. Hayrapetyan, A. Achoyan, E. Kazaryan, H. Tevosyan, Electronic states in a cylindrical quantum dot with the modified Pöschl-Teller potential in the presence of external magnetic field. J. Contemp. Phys. (Armenian Academy of Sciences) 48, 285–290 (2013). https://doi.org/10.3103/S1068337213060054

    Article  ADS  Google Scholar 

  19. D. Hayrapetyan, E. Kazaryan, H. Tevosyan, Direct interband light absorption in the cylindrical quantum dot with modified Pöschl-Teller potential. Physica E 46, 274–278 (2012). https://doi.org/10.1016/j.physe.2012.10.005

    Article  ADS  Google Scholar 

  20. T. Sargsian, M. Mkrtchyan, H. Sarkisyan, D. Hayrapetyan, Effects of external electric and magnetic fields on the linear and nonlinear optical properties of InAs cylindrical quantum dot with modified Pöschl-Teller and Morse confinement potentials. Physica E 126, 114440 (2021). https://doi.org/10.1016/j.physe.2020.114440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran Sargsian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sargsian, T. (2022). External Electric Field Effect on Interband Optical Absorption and Photoluminescence in Vertically Coupled Cylindrical Quantum Dots with Modified Pöschl-Teller Potential. In: Velichko, E., Kapralova, V., Karaseov, P., Zavjalov, S., Angueira, P., Andreev, S. (eds) International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-030-81119-8_40

Download citation

Publish with us

Policies and ethics