Skip to main content

Angiogenesis and the Tumor Microenvironment

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Tumorigenesis is a complex and multistep process involving genetic and epigenetic changes within the tumor cell, as well as supportive conditions within the tumor microenvironment (TME). The TME is widely implicated in tumorigenesis because it harbors tumor cells that interact with surrounding cells through the circulatory and lymphatic systems to influence the development and progression of cancer. Moreover, nonmalignant cells in the TME play essential roles in all stages of carcinogenesis by stimulating and facilitating uncontrolled cell proliferation. A key contributory condition is angiogenesis, blood vessel growth, which plays a critical role in the growth of cancer as solid tumors require a blood supply to grow past a few millimeters in size. Tumors promote this blood supply to form by releasing chemical signals that stimulate angiogenesis. Angiogenesis is a major point of biomedical research that has led to the clinical approval of several antiangiogenic agents resulting in new treatment strategies. This chapter outlines some of the most important aspects of the interrelationship between tumor cells and its microenvironment leading to tumor progression. The focus is on angiogenesis and incorporates novel antiangiogenic strategies and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albini A et al (2018) Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 5(9):527

    Article  CAS  Google Scholar 

  • Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35(5):585–600

    Article  CAS  PubMed  Google Scholar 

  • Borsi E et al (2015) Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma. Transl Res 165(6):641–650

    Article  CAS  PubMed  Google Scholar 

  • Brencicova E, Jagger AL, Evans HG, Georgouli M, Laios A, Attard Montalto S et al (2017) Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One 12(4):e0175712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruix J et al (2017) Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. Journal of Hepatology 67(5):999–1008

    Google Scholar 

  • Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5(2):a012559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrega P, Campana S, Bonaccorsi I, Ferlazzo G (2016) The Yin and Yang of innate lymphoid cells in cancer. Immunol Lett 179:29–35

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S et al (2020) Agrin mediates angiogenesis in the tumor microenvironment. Trends Cancer 6(2):81–85

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Wu SM, Lin YH, Chi HC, Lin SL, Yeh CT et al (2019) Induction of nuclear protein-1 by thyroid hormone enhances platelet-derived growth factor A mediated angiogenesis in liver cancer. Theranostics 9(8):2361–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Zotto G, Marcenaro E, Vacca P, Sivori S, Pende D, Della Chiesa M et al (2017) Markers and function of human NK cells in normal and pathological conditions. Cytometry B Clin Cytom 92(2):100–114

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Frentzas S, Lum C, Ting-Yu C (2020) Angiogenesis and its role in the tumour microenvironment: a target for cancer therapy. In: Rajer M, Segelov E (eds) Current cancer treatment. IntechOpen, London

    Google Scholar 

  • Gentles AJ et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillgrass AE et al (2015) Recent advances in the use of NK cells against cancer. In: Rezaei N (ed) Cancer immunology: bench to bedside immunotherapy of cancers. Springer, Cham

    Google Scholar 

  • Gordon-Weeks A et al (2017) Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2–dependent angiogenesis in mice. Hepatology 65(6):1920–1935

    Google Scholar 

  • Guerrero PA, McCarthy JH (2016) TGF-b activation and signaling in angiogenesis. In: Simionescu D, Simionescu A (eds) Physiologic and pathologic angiogenesis – signaling mechanisms and targeted therapy. IntechOpen, London

    Google Scholar 

  • Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY (2013) The role of tumor associated macrophages in tumor vascularization. Vasc Cell 5(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  • Jiang X et al (2020) The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 39:Article number: 204

    Article  Google Scholar 

  • Jorgovanovic D et al (2020) Roles of IFN-g in tumor progression and regression: a review. Biomark Res 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczynski EA et al (2019) Vessel co-option in cancer. Nat Rev Clin Oncol 16(8):469–493

    Article  CAS  PubMed  Google Scholar 

  • Lapeyre-Prost A, Terme M et al (2017) Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol 330:295–342

    Article  CAS  PubMed  Google Scholar 

  • Lewis C, Murdoch C (2005) Macrophage responses to hypoxia. Am J Pathol 167(3):627–635

    Google Scholar 

  • Liang S, Yu H, Chen X, Shen T, Cui Z, Si G et al (2017) PDGF-BB/KLF4/VEGF signaling axis in pulmonary artery endothelial cell angiogenesis. Cell Physiol Biochem 41(6):2333–2349

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Coelho F et al (2021) Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci 22(7):3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugano R et al (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1745–1770

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15(11):599–607

    Article  CAS  PubMed  Google Scholar 

  • Mattner J, Wirtz S (2017) Friend or foe? The ambiguous role of innate lymphoid cells in cancer development. Trends Immunol 38(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Mjosberg J, Spits H (2016) Human innate lymphoid cells. J Allergy Clin Immunol 138(5):1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11(10):702–711

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar RA, Nseyo O, Campbell MJ, Esserman LJ (2011) Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 11(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis C (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):224–234

    Google Scholar 

  • Murphy JF (2014) Modulation of angiogenesis by tumor associated macrophages in the tumor microenvironment. MOJ Immunol 1(3):00016

    Article  Google Scholar 

  • Murphy JF (2017) Anti-cancer therapy: non-steroidal anti-inflammatory drugs (NSAIDS) in combination with immunotherapy. MOJ Immunol 5(3):00156

    Article  Google Scholar 

  • Murphy J et al (2005) Engagement of CD44 modulates cyclooxygenase induction, VEGF generation, and proliferation in human vascular endothelial cells. FASEB J 446–8

    Google Scholar 

  • Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767

    CAS  PubMed  Google Scholar 

  • Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohm JE, Gabrilovich DI et al (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–4886

    Article  CAS  PubMed  Google Scholar 

  • Oklu R et al (2017) Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther 7:S140–S149

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Lee SE, Hur J, Hong EB, Choi JI, Yang JM et al (2015) M-CSF from cancer cells induces fatty acid synthase and PPARbeta/delta activation in tumor myeloid cells, leading to tumor progression. Cell Rep 10(9):1614–1625

    Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904

    Article  CAS  PubMed  Google Scholar 

  • Rohlenova K, Veys K et al (2018) Endothelial cell metabolism in health and disease. Trends Cell Biol 28:224–236

    Article  CAS  PubMed  Google Scholar 

  • Rusnati M, Presta M (2007) Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des 13(20):2025–2044

    Article  CAS  PubMed  Google Scholar 

  • Sangaletti S et al (2014) Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 4:110–129

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39(5):469–478

    CAS  PubMed  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G et al (2013) Innate lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Watanabe M, Tanigaki S, Iwashita M, Kobayashi Y (2018) Tumor necrosis factor-alpha regulates angiogenesis of BeWo cells via synergy of PlGF/VEGFR1 and VEGF-A/VEGFR2 axes. Placenta 74:20–27

    Article  CAS  PubMed  Google Scholar 

  • Toomey D et al (2010) Vascular endothelial growth factor and not cyclooxygenase-2 promotes endothelial cell viability in the pancreatic tumour micro-environment. Pancreas 39(5):595–603

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30(28):3499–3506

    Article  PubMed  CAS  Google Scholar 

  • Varricchi G et al (2017) Are mast cells MASTers in cancer? Front Immunol 8:424

    PubMed  PubMed Central  Google Scholar 

  • von Marschall Z et al (2003) Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst 95(6):437–448

    Article  Google Scholar 

  • Wada J et al (2009) The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res 29:881–888

    CAS  PubMed  Google Scholar 

  • Wu WZ, Sun HC, Shen YF, Chen J, Wang L, Tang ZY et al (2005) Interferon alpha 2a down-regulates VEGF expression through PI3 kinase and MAP kinase signalling pathways. J Cancer Res Clin Oncol 131(3):169–178

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Saxena S, Singh RK (2020) Neutrophils in the tumor microenvironment. In: Birbrair A (ed) Tumor microenvironment, Advances in experimental medicine and biology, vol 1224. Springer, Cham

    Chapter  Google Scholar 

  • Zhao Y, Li W (2019) Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Asian J Androl 21(3):253–259

    Google Scholar 

  • Zhao X et al (2014) Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Res 74(9):2455–2464

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murphy, J.F. (2022). Angiogenesis and the Tumor Microenvironment. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics