Skip to main content

Molecular Mechanisms Driving Bone Metastasis of Cancers

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 47 Accesses

Abstract

Bone metastasis of cancer is a common process that destroys the balance between osteoclast and osteoblast, causing skeletal-related events. Cancer bone metastasis is a complex and orderly process, including pre-metastasis niche, escape and home, colonization and dormancy, reactivation and growth. The extracellular matrix, blood vessels, various cells including immune cells and osteocytes, different factors like cytokines, growth factors, chemokines form the bone microenvironment, some of them make the tumor more prone to metastasis. In addition, primary tumors metastasize to bone through different signaling pathways. Understanding the mechanism of bone metastasis is very significant for exploring more effective treatment methods. This section introduces the mechanism of bone metastasis in different cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe M, Hiura K, Ozaki S, Kido S, Matsumoto TJ (2009) Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4–VCAM-1 adhesion and macrophage inflammatory protein-1α and MIP-1β production. J Bone Miner Metab 27(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 18(1):e8

    Article  PubMed  PubMed Central  Google Scholar 

  • Anborgh PH, Mutrie JC, Tuck AB, Chambers AF (2010) Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med 14(8):2037–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC (2002) A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. (0021–9258 (Print)). J Biol Chem 277(46):44347–44356

    Article  CAS  PubMed  Google Scholar 

  • Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA, Swain F et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. (0008–5472 (Print)). Cancer Res 65(23):11001–11009

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya RS, Stern PH (2003) IGF-I and MAP kinase involvement in the stimulatory effects of LNCaP prostate cancer cell conditioned media on cell proliferation and protein synthesis in MC3T3-E1 osteoblastic cells. (0730–2312 (Print)). J Cell Biochem 90(5):925–937

    Article  CAS  PubMed  Google Scholar 

  • Boxer DI, Todd CE, Coleman R, Fogelman I (1989) Bone secondaries in breast cancer: the solitary metastasis. J Nucl Med 30(8):1318–1320

    CAS  PubMed  Google Scholar 

  • Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG et al (2013) TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol 15(11):1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni-Cardoso A, Johnson LC, Vessella RL, Peterson TE, Lynch CC (2010) Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor–bone microenvironment. Mol Cancer Res 8(4):459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne NM, Summers MA, McDonald MM (2019) Tumor cell dormancy and reactivation in bone: skeletal biology and therapeutic opportunities. JBMR Plus 3(3):e10125

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang A-C, Chen P-C, Lin Y-F, Su C-M, Liu J-F, Lin T-H et al (2018) Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system. Cancer Lett 426:47–56

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shi HY, Stock SR, Stern PH, Zhang MJ (2011) Regulation of breast cancer-induced bone lesions by β-catenin protein signaling. J Biol Chem 286(49):42575–42584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W-g, Sun J, Shen W-w, Yang S-z, Zhang Y, Hu X et al (2019) Sema4D expression and secretion are increased by HIF-1α and inhibit osteogenesis in bone metastases of lung cancer. Clin Exp Metastasis 36(1):39–56

    Article  CAS  PubMed  Google Scholar 

  • Clarke NW, Hart CA, Brown MD (2009) Molecular mechanisms of metastasis in prostate cancer. Asian J Androl 11(1):57

    Article  CAS  PubMed  Google Scholar 

  • Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD Jr et al (2007) Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 21(2):486–498

    Article  CAS  PubMed  Google Scholar 

  • Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska AJO et al (2013) Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 6:1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20):6243s–6249s

    Google Scholar 

  • Coleman R, Hadji P, Body JJ, Santini D, Chow E, Terpos E et al (2020a) Bone health in cancer: ESMO clinical practice guidelines. Ann Oncol 31(12):1650–1663

    Google Scholar 

  • Coleman RE, Brown J, Holen I (2020b) Bone metastases. Abeloff’s Clin Oncol:809–830

    Google Scholar 

  • Coltrera MD, Wang J, Porter PL, Gown AM (1995) Expression of platelet-derived growth factor B-chain and the platelet-derived growth factor receptor β subunit in human breast tissue and breast carcinoma. Cancer Res 55(12):2703–2708

    CAS  PubMed  Google Scholar 

  • Cook LM, Shay G, Araujo A, Lynch CC (2014) Integrating new discoveries into the “vicious cycle” paradigm of prostate to bone metastases. (1573–7233 (Electronic)). Cancer Metastasis Rev 33(2-3):511–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522(7554):106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16(6):373–386

    Article  CAS  PubMed  Google Scholar 

  • D’Amico L, Roato I (2015) The impact of immune system in regulating bone metastasis formation by osteotropic tumors. J Immunol Res 2015:143526

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET (2008) Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. (1538–7445 (Electronic)). Cancer Res 68(14):5785–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA (2012) Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 1(9):1484–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant RS et al (2009) The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 284(34):22888–22897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djonov V, Cresto N, Aebersold DM, Burri PH, Altermatt HJ, Hristic M et al (2002) Tumor cell specific expression of MMP-2 correlates with tumor vascularisation in breast cancer. Int J Oncol 21(1):25–30

    CAS  PubMed  Google Scholar 

  • Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. (1557–3265 (Electronic)). Clin Cancer Res 18(2):326–335

    Article  CAS  PubMed  Google Scholar 

  • Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira S-M, García-Echeverría C et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273

    Article  CAS  PubMed  Google Scholar 

  • Duong LT, Wesolowski GA, Leung P, Oballa R, Pickarski M (2014) Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 13(12):2898–2909

    Article  CAS  PubMed  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  CAS  PubMed  Google Scholar 

  • Furesi G, Rauner M, Hofbauer LC (2021) Emerging players in prostate cancer–bone niche communication. Trends Cancer 7(2):112–121

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL et al (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7(1):e2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavriatopoulou M, Dimopoulos MA, Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M, Terpos E et al (2009) Dickkopf-1: a suitable target for the management of myeloma bone disease. (1744–7631 (Electronic)). Expert Opin Ther Targets 13(7):839–848

    Article  CAS  PubMed  Google Scholar 

  • Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghobrial IM (2012) Myeloma as a model for the process of metastasis: implications for therapy. (1528–0020 (Electronic)). Blood 120(1):20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinsky VV, Glinsky GV, Rittenhouse-Olson K, Huflejt ME, Glinskii OV, Deutscher SL et al (2001) The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61(12):4851–4857

    CAS  PubMed  Google Scholar 

  • Gong M, Ma J, Guillemette R, Zhou M, Yang Y, Yang Y et al (2014) miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res 12(1):101–110

    Article  CAS  PubMed  Google Scholar 

  • Gordon JA, Sodek J, Hunter GK, Goldberg HA (2009) Bone sialoprotein stimulates focal adhesion-related signaling pathways: role in migration and survival of breast and prostate cancer cells. J Cell Biochem 107(6):1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Grzesik WJ, Robey PG (1994) Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Metab 9(4):487–496

    Article  CAS  Google Scholar 

  • Guise T (2010) Examining the metastatic niche: targeting the microenvironment. (1532–8708 (Electronic)). Semin Oncol 37(Suppl 2):S2–S14

    Article  CAS  PubMed  Google Scholar 

  • Guise TA, Yin JJ, Mohammad KS (2003) Role of endothelin-1 in osteoblastic bone metastases. (0008-543X (Print)). Cancer 97(3 Suppl):779–784

    Article  PubMed  Google Scholar 

  • Haider M-T, Smit DJ, Taipaleenmäki H (2020) The endosteal niche in breast cancer bone metastasis. Front Oncol 10:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnts. (0008–5472 (Print)). Cancer Res 65(17):7554–7560

    Article  CAS  PubMed  Google Scholar 

  • Hall CL, Kang S, MacDougald OA, Keller ET (2006) Role of Wnts in prostate cancer bone metastases. J Cell Biochem 97(4):661–672

    Article  CAS  PubMed  Google Scholar 

  • Hall CL, Daignault SD, Shah RB, Pienta KJ, Keller ET (2008) Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. (1097–0045 (Electronic)). Prostate 68(13):1396–1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallek M, Bergsagel PL, Anderson KC (1998) Multiple myeloma: increasing evidence for a multistep transformation process. (0006–4971 (Print)). Blood 91(1):3–21

    Article  CAS  PubMed  Google Scholar 

  • Han Y, You X, Xing W, Zhang Z, Zou W (2018) Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6(1):1–11

    Article  CAS  Google Scholar 

  • Hashizume M, Hayakawa N, Mihara M (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. (1462–0332 (Electronic)). Rheumatology (Oxford) 47(11):1635–1640

    Article  CAS  PubMed  Google Scholar 

  • Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M (1986) Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 261(27):12665–12674

    Article  CAS  PubMed  Google Scholar 

  • Hensel J, Thalmann GN (2016) Biology of bone metastases in prostate cancer. (1527–9995 (Electronic)). Urology 92:6–13

    Article  PubMed  Google Scholar 

  • Hill A, McFarlane S, Johnston PG, Waugh DJJ (2006) The emerging role of CD44 in regulating skeletal micrometastasis. Cancer Lett 237(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Holland JD, Kochetkova M, Akekawatchai C, Dottore M, Lopez A, McColl SR (2006) Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Res 66(8):4117–4124

    Article  CAS  PubMed  Google Scholar 

  • Hong C, Quach A, Lin L, Olson J, Kwon T, Bezouglaia O et al (2018) Local vs. systemic administration of bisphosphonates in rat cleft bone graft: A comparative study. PLoS One 13(1):e0190901

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini H, Obradović MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M et al (2016) Early dissemination seeds metastasis in breast cancer. Nature 540(7634):552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RW, Suva LJ (2018) Hallmarks of bone metastasis. Calcif Tissue Int 102(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Wang J, Lee E, McGee S, Berry JE, Yumoto K et al (2015) Annexin 2–CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res 13(1):197–207

    Article  CAS  PubMed  Google Scholar 

  • Kakhki VRD, Anvari K, Sadeghi R, Mahmoudian A-S, Torabian-Kakhki M (2013) Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev Cent East Eur 16(2):66–69

    Article  PubMed  Google Scholar 

  • Kamdje AHN, Kamga PT, Simo RT, Vecchio L, Etet PFS, Muller JM et al (2017) Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol Med 14(2):109

    Article  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  • Karnevi E, Andersson R, Rosendahl AH (2014) Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion. Immunol Cell Biol 92(6):543–552

    Article  CAS  PubMed  Google Scholar 

  • Kesper DA, Didt-Koziel L, Vortkamp A (2010) Gli2 activator function in preosteoblasts is sufficient to mediate ihh-dependent osteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification. Dev Dyn 239(6):1818–1826

    Article  CAS  PubMed  Google Scholar 

  • Killian CS, Corral DA, Kawinski E, Constantine RI (1993) Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-β and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 192(2):940–947

    Article  CAS  PubMed  Google Scholar 

  • Kingsley LA, Fournier PGJ, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6(10):2609–2617

    Article  CAS  PubMed  Google Scholar 

  • Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T et al (2013) Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013:181849

    Article  PubMed  PubMed Central  Google Scholar 

  • Klevesath M, Pantel K, Agbaje O, Provenzano E, Wishart G, Gough P et al (2013) Patterns of metastatic spread in early breast cancer. Breast 22(4):449–454

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Maeda K, Takahashi N (2008) Roles of Wnt signaling in bone formation and resorption. Jpn Dent Sci Rev 44(1):76–82

    Article  Google Scholar 

  • Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208(13):2641–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12(6):657–664

    Article  CAS  PubMed  Google Scholar 

  • Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamoureux F, Picarda G, Garrigue-Antar L, Baud’huin M, Trichet V, Vidal A, Miot-Noirault E et al (2009) Glycosaminoglycans as potential regulators of osteoprotegerin therapeutic activity in osteosarcoma. (1538–7445). Cancer Res 69(2):526–536

    Article  CAS  PubMed  Google Scholar 

  • Lath DL, Buckle CH, Evans HR, Fisher M, Down JM, Lawson MA et al (2018) ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo. PLoS One 13(6):e0199517

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson MA, McDonald MM, Kovacic N, Khoo WH, Terry RL, Down J et al (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6(1):1–15

    Article  Google Scholar 

  • Lee AW, States DJ (2000) Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. (0270–7306 (Print)). Mol Cell Biol 20:6779–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90(2):118–123

    Article  CAS  PubMed  Google Scholar 

  • Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 1143(1):123–150

    Article  CAS  PubMed  Google Scholar 

  • Li J, Karaplis AC, Huang DC, Siegel PM, Camirand A, Yang XF et al (2011) PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target. J Clin Invest 121(12):4655–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Sohn J, Shen H, Langhans MT, Tuan RS (2019) Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 203:96–110

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yu J, Song S, Yue X, Li Q (2017) Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 8(63):107334

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20(6):701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y et al (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. (1546-170X (Electronic)). Nat Med 18(3):405–412

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Kobayashi YA-O, Koide MA-O, Uehara S, Okamoto MA-OX, Ishihara A et al (2019) The regulation of bone metabolism and disorders by Wnt signaling (1422–0067 (Electronic)). Int J Mol Sci. https://doi.org/10.3390/ijms20225525

  • Maki RG (2010) Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol 28(33):4985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroni PA-O, Bendinelli P (2020) Bone, a secondary growth site of breast and prostate carcinomas: role of osteocytes. (2072–6694 (Print)). Cancers (Basel) 12(7):1812. https://doi.org/10.3390/cancers12071812

    Article  CAS  PubMed  Google Scholar 

  • Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Massfelder T, Lang H, Schordan E, Lindner V, Rothhut S, Welsch S et al (2004) Parathyroid hormone-related protein is an essential growth factor for human clear cell renal carcinoma and a target for the von Hippel-Lindau tumor suppressor gene. Cancer Res 64(1):180–188

    Article  CAS  PubMed  Google Scholar 

  • Maurizi A, Rucci N (2018) The osteoclast in bone metastasis: player and target. (2072–6694 (Print)). Cancers (Basel) 10(7):218. https://doi.org/10.3390/cancers10070218

    Article  CAS  PubMed  Google Scholar 

  • Mayhew V, Omokehinde T, Johnson RA-O (2020) Tumor dormancy in bone. (2573–8348 (Electronic)). Cancer Rep (Hoboken) 3(1):e1156

    PubMed  Google Scholar 

  • McDonald MA-O, Reagan MA-O, Youlten SA-O, Mohanty ST, Seckinger A, Terry RL et al (2017) Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. (1528–0020 (Electronic)). Blood 129(26):3452–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Vander Ark A, Daft P, Woodford E, Wang J, Madaj Z et al (2018) Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis. Cancer Lett 418:109–118

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Shiozawa Y, Pienta KJ, Taichman RS (2011) Homing of cancer cells to the bone. Cancer Microenviron 4(3):221–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Wang J, Shiozawa Y, McGee S, Kim J, Jung Y et al (2012) Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Mol Cancer Res 10(6):703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro AC, Leal AC, Gonçalves-Silva T, Mercadante ACT, Kestelman F, Chaves SB et al (2013) T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One 8(7):e68171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ, Mundy GR et al (2004) Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. (0006–4971 (Print)). Blood 104(7):2149–2154

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y et al (2011) Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26(12):2978–2990

    Article  CAS  PubMed  Google Scholar 

  • Negishi-Koga T, Takayanagi H (2009) Ca2 + -NFATc1 signaling is an essential axis of osteoclast differentiation. (1600-065X (Electronic)). Trends Endocrinol Metab 27(10):706–718

    Google Scholar 

  • Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  CAS  PubMed  Google Scholar 

  • Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci 103(33):12493–12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshiba T, Miyaura C, Ito A (2003) Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. Biochem Biophys Res Commun 300(4):957–964

    Article  CAS  PubMed  Google Scholar 

  • Oster G, Lamerato L, Glass AG, Richert-Boe KE, Lopez A, Chung K et al (2013) Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer 21(12):3279–3286

    Article  PubMed  Google Scholar 

  • Ottewell PD, Wang N, Meek J, Fowles CA, Croucher PI, Eaton CL et al (2014) Castration-induced bone loss triggers growth of disseminated prostate cancer cells in bone. Endocr Relat Cancer 21(5):769–781

    Article  CAS  PubMed  Google Scholar 

  • Ottewell PD, Wang N, Brown HK, Fowles CA, Croucher PI, Eaton CL et al (2015) OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int J Cancer 137(4):968–977

    Article  CAS  PubMed  Google Scholar 

  • Pacifici R (2016) The role of IL-17 and TH17 cells in the bone catabolic activity of PTH. (1664–3224 (Print)). Front Immunol 7:57

    PubMed  PubMed Central  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  • Parmo-Cabañas M, Bartolomé RA, Wright N, Hidalgo A, Drager AM, Teixidó J (2004) Integrin α4β1 involvement in stromal cell-derived factor-1α-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 294(2):571–580

    Article  PubMed  Google Scholar 

  • Phan TG, Croucher PI (2020) The dormant cancer cell life cycle. Nat Rev Cancer 20(7):398–411

    Article  CAS  PubMed  Google Scholar 

  • Pinilla S, Alt E, Khalek FJA, Jotzu C, Muehlberg F, Beckmann C et al (2009) Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 284(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Podgorski I, Linebaugh BE, Koblinski JE, Rudy DL, Herroon MK, Olive MB et al (2009) Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis. Am J Pathol 175(3):1255–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohlodek K, Tan YY, Singer CF, Gschwantler-Kaulich D (2016) Cadherin-11 expression is upregulated in invasive human breast cancer. Oncol Lett 12(6):4393–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156(8):2918–2926

    Article  CAS  PubMed  Google Scholar 

  • Prunier C, Baker D, Ten Dijke P, Ritsma L (2019) TGF-β family signaling pathways in cellular dormancy. Trends Cancer 5(1):66–78

    Article  CAS  PubMed  Google Scholar 

  • Rahim F, Hajizamani S, Mortaz E, Ahmadzadeh A, Shahjahani M, Shahrabi S et al (2014) Molecular regulation of bone marrow metastasis in prostate and breast cancer. Bone Marrow Res 2014:405920

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren XF, Mu LP, Jiang YS, Wang L, Ma JF (2015) LY2109761 inhibits metastasis and enhances chemosensitivity in osteosarcoma MG-63 cells. Eur Rev Med Pharmacol Sci 19(7):1182–1190

    PubMed  Google Scholar 

  • Rieunier G, Wu X, Macaulay VM, Lee AV, Weyer-Czernilofsky U, Bogenrieder TJCCR (2019) Bad to the bone: the role of the insulin-like growth factor axis in osseous metastasis. Clin Cancer Res 25(12):3479–3485

    Article  CAS  PubMed  Google Scholar 

  • Riquelme MA, Cardenas ER, Jiang JX (2020) Osteocytes and Bone Metastasis. (1664–2392 (Print)). Front Endocrinol (Lausanne) 11:567844

    Article  PubMed  Google Scholar 

  • Roato I (2014) Bone metastases: when and how lung cancer interacts with bone. (2218–4333 (Print)). World J Clin Oncol 5(2):149–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Roato I, Caldo D, Godio L, D’Amico L, Giannoni P, Morello E, Quarto R et al (2010) Bone invading NSCLC cells produce IL-7: mice model and human histologic data. (1471–2407 (Electronic)). BMC Cancer 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Roussou M, Tasidou A, Dimopoulos MA, Kastritis E, Migkou M, Christoulas D, Gavriatopoulou M et al (2009) Increased expression of macrophage inflammatory protein-1alpha on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma. (1476–5551 (Electronic)). Leukemia 23(11):2177–2181

    Article  CAS  PubMed  Google Scholar 

  • Ruppender NS, Merkel AR, Martin TJ, Mundy GR, Sterling JA, Guelcher SA (2010) Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One 5(11):e15451

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I et al (2015) Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS One 10(6):e0130565

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo M, Katara GK, Bilal MY, Ibrahim SA, Kulshrestha A, Fleetwood S et al (2018) Hematopoietic stem cell specific V-ATPase controls breast cancer progression and metastasis via cytotoxic T cells. Oncotarget 9(69):33215

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Fernandez MA, Gallois A, Riedl T, Jurdic P, Hoflack B (2008) Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling. (1932–6203 (Electronic)). PLoS One 3(10):e3537

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Rodrıguez F, Hidalgo A, Teixidó JJB (2001) Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97(2):346–351

    Article  PubMed  Google Scholar 

  • Sawant A, Ponnazhagan S (2013) Myeloid-derived suppressor cells as osteoclast progenitors: a novel target for controlling osteolytic bone metastasis. Cancer Res 73(15):4606–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JG, Amend SR, Weilbaecher KN (2011) Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 48(1):54–65

    Article  CAS  PubMed  Google Scholar 

  • Sela J (1977) Bone remodeling in pathologic conditions. A scanning electron microscopic study. (0008–0594 (Print)). Calcif Tissue Res 23(3):229–234

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Chen L, Wang Y, Jiang X, Xia H, Zhuang Z (2015) Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. (1573–7373 (Electronic)). J Neuro-Oncol 121(1):101–108

    Article  CAS  Google Scholar 

  • Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM (2018) Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel) 10(6):182

    Article  PubMed  Google Scholar 

  • Sousa S, Määttä J (2016) The role of tumour-associated macrophages in bone metastasis. J Bone Oncol 5(3):135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Soysa N, Alles N (2009) NF-κB functions in osteoclasts. Biochem Biophys Res Commun 378(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic S, Schuetz F, Sohn C, Beckhove P, Domschke CJC, Reviews M (2014) Adoptive immunotherapy of metastatic breast cancer: present and future. Cancer Metastasis Rev 33(1):309–320

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. (0163-769X (Print)). Endocr Rev 20(3):345–357

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J et al (2005) Skeletal localization and neutralization of the SDF-1 (CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Fang M, Wang J, Cooper CR, Pienta KJ, Taichman RS (2007) Expression and activation of αvβ3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67(1):61–73

    Article  CAS  PubMed  Google Scholar 

  • Taguchi Y, Gohda J, Koga T, Takayanagi H, Inoue J (2009) A unique domain in RANK is required for Gab2 and PLCgamma2 binding to establish osteoclastogenic signals. (1365–2443 (Electronic)). Genes Cells 14(11):1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837

    CAS  PubMed  Google Scholar 

  • Taichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T et al (2013) GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One 8(4):e61873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taipaleenmäki H, Farina NH, van Wijnen AJ, Stein JL, Hesse E, Stein GS et al (2016) Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget 7(48):79032

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. (0006-291X (Print)). Biochem Biophys Res Commun 256(3):449–455

    Article  CAS  PubMed  Google Scholar 

  • Tamura D, Hiraga T, Myoui A, Yoshikawa H, Yoneda T (2008) Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol 33(1):17–24

    CAS  PubMed  Google Scholar 

  • Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T (1999) Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. (0022–0345 (Print)). J Dent Res 78(10):1617–1623

    Article  CAS  PubMed  Google Scholar 

  • Terpos E, Christoulas D, Katodritou E, Bratengeier C, Gkotzamanidou M, Michalis E, Delimpasi S et al (2012a) Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. (1097–0215 (Electronic)). Int J Cancer 131(6):1466–1471

    Article  CAS  PubMed  Google Scholar 

  • Terpos E, Kastritis E, Christoulas D, Gkotzamanidou M, Eleutherakis-Papaiakovou E, Kanellias N et al (2012b) Circulating activin-A is elevated in patients with advanced multiple myeloma and correlates with extensive bone involvement and inferior survival; no alterations post-lenalidomide and dexamethasone therapy. (1569–8041 (Electronic)). Ann Oncol 23(10):2681–2686

    Article  CAS  PubMed  Google Scholar 

  • Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140(10):4451–4458

    Article  CAS  PubMed  Google Scholar 

  • Thulin MH, Jennbacken K, Damber J-E, Welén K (2014) Osteoblasts stimulate the osteogenic and metastatic progression of castration-resistant prostate cancer in a novel model for in vitro and in vivo studies. Clin Exp Metastasis 31(3):269–283

    Article  Google Scholar 

  • Valencia K, Martín-Fernández M, Zandueta C, Ormazábal C, Martínez-Canarias S, Bandrés E et al (2013) miR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis. Bone 52(1):532–539

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25(4):573–587

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hu F, Guo S, Mi D, Shen W, Zhang J et al (2011) BMP-6 inhibits MMP-9 expression by regulating heme oxygenase-1 in MCF-7 breast cancer cells. J Cancer Res Clin Oncol 137(6):985–995

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Xia B, Yang C, Lai H, Chen X (2013) BSP gene silencing inhibits migration, invasion, and bone metastasis of MDA-MB-231BO human breast cancer cells. PLoS One 8(5):e62936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang LF, Wu J, Xu SJ, Xu YY, Li D et al (2014) IL-1β-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. (1538–7445 (Electronic)). Cancer Res 74(17):4720–4730

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Docherty F, Brown HK, Reeves K, Fowles A, Lawson M et al (2015) Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB J 29(8):3141–3150

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115(2):282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CW, Stainier DY (2010) Vertebrate Hedgehog signaling: cilia rule. BMC Biol 8(1):1–3

    Article  Google Scholar 

  • Wu Q, Zhou X, Huang D, Ji Y, Kang F (2017) IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. (1421–9778 (Electronic)). Cell Physiol Biochem 41(4):1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Lin K, Li X, Yuan X, Xu P, Ni P et al (2020) Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol 11:1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Gilkes DM (2019) The contribution of the immune system in bone metastasis pathogenesis. Int J Mol Sci 20(4):999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Yang F, Liu R, Li X, Fan H, Liu J et al (2018) Serum microRNA-139-5p is downregulated in lung cancer patients with lytic bone metastasis. Oncol Rep 39(5):2376–2384

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L et al (2018) PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin Cancer Res 24(4):834–846

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y et al (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. (0013–7227 (Print)). Endocrinology 139(3):1329–1337

    Article  PubMed  Google Scholar 

  • Yen M-L, Hsu P-N, Liao H-J, Lee B-H, Tsai H-F (2012) TRAF-6 dependent signaling pathway is essential for TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation. PLoS One 7(6):e38048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin JJ, Mohammad KS, Käkönen SM, Harris S, Wu-Wong JR, Wessale JL et al (2003) A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci U S A 100(19):10954–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu SJ (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-κB signaling pathways. J Biol Chem 283(17):11535–11540

    Article  CAS  PubMed  Google Scholar 

  • Yue Z, Niu X, Yuan Z, Qin Q, Jiang W, He L et al (2021) RSPO2/RANKL-LGR4 signaling regulates osteoclastic pre-metastatic niche formation and bone metastasis. J Clin Invest

    Google Scholar 

  • Yu-Lee L-Y, Yu G, Lee Y-C, Lin S-C, Pan J, Pan T et al (2018) Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII–p38MAPK–pS249/T252RB pathway. Cancer Res 78(11):2911–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yumoto K, Eber MR, Wang J, Cackowski FC, Decker AM, Lee E et al (2016) Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6(1):1–16

    Article  Google Scholar 

  • Zhang J-H, Wang J, Tang J, Barnett B, Dickson J, Hahsimoto N et al (2004) Bone sialoprotein promotes bone metastasis of a non-bone-seeking clone of human breast cancer cells. Anticancer Res 24(3A):1361–1368

    CAS  PubMed  Google Scholar 

  • Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E et al (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Yang L, Zeng Z, Feng Y, Wang X, Wu X et al (2020) Leptin potentiates BMP9-induced osteogenic differentiation of mesenchymal stem cells through the activation of JAK/STAT signaling. Stem Cells Dev 29(8):498–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Liu C, Xie Y, Tang M, Luo G, Chen X et al (2020) Lung cancer cells derived circulating mir-21 promotes differentiation of monocytes into osteoclasts. Onco Targets Ther 13:2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F et al (2017) Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol 19(10):1274–1285

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Hong Y, Tong Y, Wei J, Qin Y, Shao S et al (2015) Sonic hedgehog produced by bone marrow-derived mesenchymal stromal cells supports cell survival in myelodysplastic syndrome. Stem Cells Int 2015:957502

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This section is supported by the Natural Science Foundation Council of China (82172386, 81700780 and 81922081), the Department of Education of Guangdong Province (2021KTSCX104), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012164), and the Science, Technology and Innovation Commission of Shenzhen (JCYJ20210324104201005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuekun Fu or Chao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qiu, F., Huang, J., Fu, X., Liang, C. (2023). Molecular Mechanisms Driving Bone Metastasis of Cancers. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics