Skip to main content

Glycogen as an Effective Target in Cancer Therapy

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Research activities have presented different methods in cancer prevention, early detection, screening, diagnosis, and treatment. Furthermore, several compounds have shown tremendous influence into understanding buildup and breakdown of cancer cells. One major compound that has promoted breakthrough in cancer studies is glycogen and its functional attributes controlling cellular activities. Glycogen has been linked to diver activities that promote malignancy, including proliferation, migration, invasion, and chemoresistance of cancer cells. Currently, glycogen metabolism has become a recognized feature of cancer cells since it is upregulated in many tumor types, suggesting that it is an important aspect of cancer cell pathophysiology. The aim of this investigation was to identify several metabolic factors associated with glycogen metabolism suggesting it as an effective compound in cancer treatment. The report furthermore provides detailed information about the importance and relevance of enzymatic reactions, also the need to discover new metabolites with hypermetabolic hyperactivities toward treatment of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

6-AN:

6-aminoicotinamide

ATP:

Adenosine triphosphate

BAD:

Bcl-2 homodimer

BAX:

Bcl-2-associated X protein

G-6-P:

Glucose six phosphate

HIF:

Hypoxia-inducible factor

HK2:

Hexokinase

LDH-A:

Lactate dehydrogenase A

MCT:

Monocarboxylates

MMPR:

6-methylmercaptopurine riboside

ODD:

Oxygen depletion

PET:

Positron emission tomography

PGK:

Phosphoglycerate kinase

RCTs:

Randomized control trials

ROS:

Reactive oxygen species

SGLT1:

Sodium glucose transporter 1

VHL:

Von Hippel-Lindau

References

  • Adams JM, Difazio LT, Rolandelli RH et al (2009) HIF-1: a key mediator in hypoxia (review). Acta Physiol Hung 96(1):19–28

    Article  CAS  Google Scholar 

  • Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernández-Pérez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM et al (2018) Increased lactate secretion by cancer cells sustains non-cell- autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28:848–865 e6

    Article  CAS  Google Scholar 

  • Chen Z, Lu W, Garcia-Prieto C, Huang P (2007) The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39(3):267–274

    Article  CAS  Google Scholar 

  • Danial N, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al (2003) Nature 424:952–956

    Article  CAS  Google Scholar 

  • De Lena M, Lorusso V, Latorre A, Fanizza G, Gargano G, Caporusso L, Guida M, Catino A, Crucitta E, Sambiasi D, Mazzei A (2001) Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. Eur J Cancer 37:364–368

    Article  Google Scholar 

  • Dobashi Y, Watanabe H, Matsubara M et al (2006) Autocrine motility factor/glucose-6-phosphate isomerase is a possible predictor of metastasis in bone and soft tissue tumours. J Pathol 208(1):44–53

    Article  CAS  Google Scholar 

  • Ernst E (2009) Complementary and alternative medicine (CAM) and cancer: the kind face of complementary medicine. Int J Surg 7(6):499–500

    Article  CAS  Google Scholar 

  • Fan K, Fan Z, Cheng H, Huang Q, Yang C, Jin K, Luo G, Yu X, Liu C (2019) Hexokinase 2 dimerization and interaction with voltage-dependent anion channel promoted resistance to cell apoptosis induced by gemcitabine in pancreatic cancer. Cancer Med 8:5903–5915

    Article  CAS  Google Scholar 

  • Ferreira LMR (2010) Cancer metabolism: the Warburg effect today. Exp Mol Pathol 89(3):372–380

    Article  CAS  Google Scholar 

  • Funasaka T, Haga A, Raz A, Nagase H (2001) Biochem Biophys Res Commun 285:118–128

    Article  CAS  Google Scholar 

  • Funasaka T, Haga A, Raz A, Nagase H (2002) Int J Cancer 101:217–223

    Article  CAS  Google Scholar 

  • Gadducci A, Brunetti I, Muttini MP, Fanucchi A, Dargenio F, Giannessi PG, Conte PF (1994) Epidoxorubicin and lonidamine in refractory or recurrent epithelial ovarian cancer. Eur J Cancer 30A:1432–1435

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  Google Scholar 

  • Geng C, Li J, Ding F, Wu G, Yang Q, Sun Y, Zhang Z, Dong T, Tian X (2016) Curcumin suppresses 4-hydroxytamoxifen resistance in breast cancer cells by targeting SLUG/hexokinase 2 pathway. Biochem Biophys Res Commun 473:147–153

    Article  CAS  Google Scholar 

  • Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N (2021) The pentose phosphate pathway in cancer: regulation and therapeutic opportunities. Chemotherapy 1–13

    Google Scholar 

  • Higashimura Y, Nakajima Y, Yamaji R et al (2011) Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys 509(1):1–8

    Article  CAS  Google Scholar 

  • Hsiao WLW, Liu L (2010) The role of traditional Chinese herbal medicines in cancer therapy—from TCM theory to mechanistic insights. Planta Med 76(11):1118–1131

    Article  CAS  Google Scholar 

  • Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov DV, Wirtz KW, Chernyak BV et al (2004) Biochim Biophys Acta 1658:141–147

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    Article  CAS  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    Article  CAS  Google Scholar 

  • Koh MY, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33(11):526–534

    Article  CAS  Google Scholar 

  • Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA, Kudryavtseva AV (2013) Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets 17:1221–1233

    Article  CAS  Google Scholar 

  • Layzer RB, Rowland LP, Bank WJ (1969) Physical and kinetic properties of human phosphofructokinase from skeletal muscle and erythrocytes. J Biol Chem 244:3823–3831

    Article  CAS  Google Scholar 

  • Li Z, Tang X, Luo Y, Chen B, Zhou C, Wu X, Tang Z, Qi X, Cao G, Hao J et al (2019) NK007 helps in mitigating paclitaxel resistance through p38MAPK activation and HK2 degradation in ovarian cancer. J Cell Physiol 20:16178

    Article  Google Scholar 

  • Liu H, Hu YP, Savaraj N, Priebe W, Lampidis TJ (2001) Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40(18):5542–5547.

    Google Scholar 

  • Liu X, Miao W, Huang M, Li L, Dai X, Wang Y (2019) Elevated hexokinase II expression confers acquired resistance to 4-hydroxytamoxifen in breast cancer cells. Mol Cell Proteomics 18:2273–2284

    Article  CAS  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  Google Scholar 

  • Mahammedi H, Planchat E, Pouget M, Durando X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert M et al (2016) The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: a pilot phase II study. Oncology 90:69–78

    Article  CAS  Google Scholar 

  • Martin DS, Spriggs D, Koutcher JA (2001) Apoptosis 6:125–131

    Article  CAS  Google Scholar 

  • Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh G et al (2004) Cancer Res 64:31–34

    Article  CAS  Google Scholar 

  • Mazure KS, Boschek CB, Hugo F, Eigenbrodt E (2005) Semin Cancer Biol 15:300–308

    Article  Google Scholar 

  • Monti E, Gariboldi MB (2011) HIF-1 as a target for cancer chemotherapy, chemosensitization and chemoprevention. Curr Mol Pharmacol 4(1):62–77

    Article  CAS  Google Scholar 

  • Munoz-Pinedo C, Ruiz-Ruiz C, Ruizde Almodovar C, Palacios C, Lopez-Rivas A (2003) J Biol Chem 278:12759–12768

    Article  CAS  Google Scholar 

  • Nagy E, Henics T, Eckert M, Miseta A, Lightowlers RN, Kellermayer M (2000) Biochem Biophys Res Commun 275:253–260

    Article  CAS  Google Scholar 

  • Ouyang H, Wang P, Meng Z et al (2011) Multimodality treatment of pancreatic cancer with liver metastases using chemotherapy, radiation therapy, and/or Chinese herbal medicine. Pancreas 40(1):120–125

    Article  CAS  Google Scholar 

  • Pastorinoand JG, Hoek JB (2003) Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10(16):1535–1551

    Article  Google Scholar 

  • Podar K, Anderson KC (2010) A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 9(9):1722–1728

    Article  CAS  Google Scholar 

  • Prat A, Baselga J (2008) The role of hormonal therapy in the management of hormonal-receptor-positive breast cancer with co-expression of HER2. Nat Clin Pract Oncol 5(9):531–542

    Article  CAS  Google Scholar 

  • Rai Y, Yadav P, Kumari N, Kalra N, Bhatt AN (2019) Hexokinase II inhibition by 3-bromopyruvate sensitizes myeloid leukemia cells K-562 to anti-leukemic drug, daunorubicin. Biosci Rep 39:BSR20190880

    Article  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  Google Scholar 

  • Semenza GL, Artemia D, Bedi A, Bhujwalla Z, Chiles K, Feldser D et al (2001) Novartis Found Symp 240:251260

    Google Scholar 

  • Shanmugam M, McBrayer SK, Rosen ST (2009) Targeting the Warburg effect in hematological malignancies: from PET to therapy. Curr Opin Oncol 21(6):531–536

    Article  Google Scholar 

  • VandeBerg JL (1985) The phosphoglycerate kinase isozyme system in mammals: biochemical, genetic, developmental, and evolutionary aspects. Isozymes 12:133–187

    Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  Google Scholar 

  • Varghese E, Samuel SM, Liskova A, Samec M, Kubatka P, Busselberg D (2020) Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel) 12:2252

    Article  CAS  Google Scholar 

  • Vora S (1983) Isozymes of human phosphofructokinase: biochemical and genetic aspects. Isozymes Curr Top Biol Med Res 11:3–23

    CAS  Google Scholar 

  • Warburg O (1956a) Science 123:309–314

    Article  CAS  Google Scholar 

  • Warburg O (1956b) On respiratory impairment in cancer cells. Science 124(3215):269–270

    Article  CAS  Google Scholar 

  • Williams KR, Reddigari S, Patel GL (1985) Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proc Natl Acad Sci USA 82:5260–5264

    Article  CAS  Google Scholar 

  • Xie V, Valera A, Merino MJ et al (2009) LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol Cancer Ther 8(3):626–635

    Article  CAS  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al (2005) Cancer Res 65:613–621

    Article  CAS  Google Scholar 

  • Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, Sun Y, Liu Z, Du Y, Yu Z (2018) PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 37:5997–6009

    Article  CAS  Google Scholar 

  • Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, Sun Y, Liu Z, Du Y, Yu Z (2020) Correction: PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 39:720–721

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Akram, M. et al. (2023). Glycogen as an Effective Target in Cancer Therapy. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_268-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_268-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics