Skip to main content

Water Contribution to the Protein Folding and Its Relevance in Protein Design and Protein Aggregation

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 266))

  • 586 Accesses

Abstract

Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressure denaturation, or the limits of temperature and pressure above which no protein has a stable, functional state, or how unfolding and aggregation are related. Here we review our results based on a theoretical approach that can rationalize the water contribution to protein solutions’ free energy. We show, using Monte Carlo simulations, how we can explain experimental data with our recent results. We discuss how our findings can help in developing new strategies for the design of novel synthetic biopolymers or new possible approaches for mitigating neurodegenerative pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

two-dimensional

3D:

three-dimensional

b:

bulk

f:

folding

GPU:

graphics processing unit

h:

hydration

HB:

hydrogen bond

IFP:

inverse folding problem

IU:

internal units

MD:

molecular dynamics

R:

residue

SR:

stability region

u:

unfolding

w:

water

C p :

isobaric heat capacity

C p :

isobaric heat capacity

F :

effective free energy

H :

enthalpy

k :

factor of compressibility

k B :

Boltzmann constant

N :

number of cells

P :

pressure

r :

distance

S :

entropy

T :

temperature

V :

volume

v :

proper volume

α :

thermal expansivity factor

b :

isothermal compressibility factor

ϵ :

depth of the potential well

∆x :

difference in magnitude x between final and initial state

σ :

bonding index

Φ :

hydrophobic amino acid

ζ :

hydrophilic amino acid

χ :

mixed amino acids

References

  1. Chiti F, Dobson C (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  Google Scholar 

  2. Lau K, Dill K (1989) A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10):3986–3997. https://doi.org/10.1021/ma00200a030

    Article  ADS  Google Scholar 

  3. Meersman F, Dobson C, Heremansa K (2006) Protein unfolding, amyloid fibril formation and configurational energy landscapes under high-pressure conditions. Chem Soc Rev 35:908–917. https://doi.org/10.1039/B517761H

    Article  Google Scholar 

  4. Roche J, Caro J, Norberto D, Barthe P, Roumestand C, Schlessman J, Garcia A, Royer C (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci 109:6945–6950. https://doi.org/10.1073/pnas.1200915109

    Article  ADS  Google Scholar 

  5. Privalov P (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–306. https://doi.org/10.3109/10409239009090612

    Article  Google Scholar 

  6. Bruscolini P, Casetti L (2000) Lattice model for cold and warm swelling of polymers in water. Phys Rev E 61:R2208. https://doi.org/10.1103/PhysRevE.61.R2208

    Article  ADS  Google Scholar 

  7. Bastolla U, Grassberger P (2001) Exactness of the annealed and the replica symmetric approximations for random heteropolymers. Phys Rev E 63:031901. https://doi.org/10.1103/PhysRevE.63.031901

    Article  ADS  Google Scholar 

  8. Lesch H, Stadlbauer H, Friedrich J, Vanderkooi J (2002) Stability diagram and unfolding of a modified cytochrome c: what happens in the transformation regime? Biophys J 82:1644–1653. https://doi.org/10.1016/S0006-3495(02)75515-X

    Article  Google Scholar 

  9. Larios E, Gruebele M (2010) Protein stability at negative pressure. Methods 52:51–56. https://doi.org/10.1016/j.ymeth.2010.04.010

    Article  Google Scholar 

  10. Muller N (1990) Search for a realistic view of hydrophobic effects. Acc Chem Res 23:23–28. https://doi.org/10.1021/ar00169a005

    Article  Google Scholar 

  11. Marqués M, Borreguero J, Stanley HE, Dokholyan N (2003) Possible mechanism for cold denaturation of proteins at high pressure. Phys Rev Lett 91:138103. https://doi.org/10.1103/PhysRevLett.91.138103

    Article  ADS  Google Scholar 

  12. Patel B, Debenedetti P, Stillinger F, Rossky P (2007) A water-explicit lattice model of heat-, cold-, and pressure-induced protein unfolding. J Biophys J 93:4116–4127. https://doi.org/10.1529/biophysj.107.108530

    Article  Google Scholar 

  13. Badasyan AV, Tonoyan ShA, Mamasakhlisov YSh, Giacometti A, Benight AS, Morozov VF (2011) Competition for hydrogen-bond formation in the helix-coil transition and protein folding. Phys Rev E 83:051903. https://doi.org/10.1103/physreve.83.051903

    Article  ADS  Google Scholar 

  14. Dobson C (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15:3–16. https://doi.org/10.1016/j.semcdb.2003.12.008

    Article  Google Scholar 

  15. Hawley SA (1971) Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–2442. https://doi.org/10.1021/bi00789a002

    Article  Google Scholar 

  16. Lindorff-Larsen K, Piana S, Dror R, Shaw D (2011) How fast-folding proteins fold. Science 334:517. https://doi.org/10.1126/science.1208351

    Article  ADS  Google Scholar 

  17. Rosenman D, Connors C, Chen W, Wang C, García A (2013) Aβ Monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J Mol Biol 425:3338. https://doi.org/10.1016/j.jmb.2013.06.021

    Article  Google Scholar 

  18. Lin Y, Bowman G, Beauchamp K, Pande V (2012) Investigating how peptide length and a pathogenic mutation modify the structural ensemble of amyloid beta monomer. Biophys J 102:315–324. https://doi.org/10.1016/j.bpj.2011.12.002

    Article  Google Scholar 

  19. Herrera-Nieto P, Pérez A, De Fabritiis G (2020) Characterization of partially ordered states in the intrinsically disordered N-terminal domain of p53 using millisecond molecular dynamics simulations. Sci Rep 10:12402. https://doi.org/10.1038/s41598-020-69322-2

    Article  ADS  Google Scholar 

  20. Robertson J, Nassar R, Liu C, Brini E, Dill K, Perez A (2019) NMR-assisted protein structure prediction with MELDxM. Proteins 87:1333–1340. https://doi.org/10.1002/prot.25788

    Article  Google Scholar 

  21. Brini E, Simmerling C, Dill K (2020) Protein storytelling through physics. Science 370:3041. https://doi.org/10.1126/science.aaz3041

    Article  Google Scholar 

  22. Tajkhorshid E, Aksimentiev A, Balabin I, Gao M, Isralewitz B, Phillips J, Zhu F, Schulten K (2003) Large scale simulation of protein mechanics and function. Adv Protein Chem 66:195–247. https://doi.org/10.1016/S0065-3233(03)66006-7

    Article  Google Scholar 

  23. Nowak W (2017) Applications of computational methods to simulations of proteins dynamics. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos M, Reis H, Shukla M (eds) Handbook of Computational Chemistry. Springer, Cham, pp 1–43. https://doi.org/10.1007/978-3-319-27282-5_31

  24. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DT, de Vries AH (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936. https://doi.org/10.1021/acs.chemrev.6b00163

    Article  Google Scholar 

  25. Franzese G, Stanley HE (2002) Liquid-liquid critical point in a Hamiltonian model for water: analytic solution. J Phys: Condens Matter 14:2201. https://doi.org/10.1088/0953-8984/14/9/309

    Article  ADS  Google Scholar 

  26. Franzese G, Stanley HE (2002) A theory for discriminating the mechanism responsible for the water density anomaly. Phys A 314:508. https://doi.org/10.1016/S0378-4371(02)01186-X

    Article  Google Scholar 

  27. Franzese G, Marqués M, Stanley HE (2003) Intramolecular coupling as a mechanism for a liquid-liquid phase transition. Phys Rev E 67:011103. https://doi.org/10.1103/PhysRevE.67.011103

    Article  ADS  Google Scholar 

  28. Mazza M, Stokely K, Strekalova EG, Stanley HE, Franzese G (2009) Cluster Monte Carlo and numerical mean-field analysis for the water liquid-liquid phase transition. Comput Phys Commun 180:497–502. https://doi.org/10.1016/j.cpc.2009.01.018

    Article  ADS  Google Scholar 

  29. Bianco V, Franzese G (2019) Hydrogen bond correlated percolation in a supercooled water monolayer as a hallmark of the critical region. J Mol Liq 285:727–739. https://doi.org/10.1016/j.molliq.2019.04.090

    Article  Google Scholar 

  30. Coronas L, Vilanova O, Bianco V, Santos F, Franzese G (2020) The Franzese-Stanely coarse grained model for hydration water. arXiv:2004.03646

  31. Franzese G, Yamada M, Stanley HE (2000) Hydrogen-bonded liquids: Effects of correlations of orientational degrees of freedom. In: Tokuyama M, Stanley HE (eds) AIP Conference Proceedings, CP519, Statistical Physics, pp 281–287. https://doi.org/10.1063/1.1291569

  32. Franzese G, Stanley HE (2005) The metastable liquid-liquid phase transition: From water to colloids and liquid metals. In: Beck C, Benedek G, Rapisarda A, Tsallis C (eds) Complexity, Metastability And Nonextensivity. World Scientific, Singapore, pp 210–214. https://doi.org/10.1142/9789812701558_0024

  33. Stanley HE, Kumar P, Xu L, Franzese G, Yan Z, Mazza M, Buldyrev SV, Chen SH, Mallamace F (2008) Liquid polyamorphism: possible relation to the anomalous behavior of water. Eur Phys J Spec Top 161:1–17. https://doi.org/10.1140/epjst/e2008-00746-3

    Article  Google Scholar 

  34. Stanley HE, Buldyrev S V, Chen S-H, Franzese G, Han S, Kumar P, Mallamace F, Mazza MG, Xu L, Yan Z (2009) Liquid polyamorphism and the anomalous behavior of water. In: Haug R (ed) Advances in Solid State Physics. Springer, Heidelberg, pp 249–266. https://doi.org/10.1007/978-3-540-85859-1_20

  35. De los Santos F, Franzese G (2009) Influence of intramolecular couplings in a model for hydrogen-bonded liquids. In: Marro J, Garrido PL, Hurtado PI (eds) AIP Conference Proceedings. CP1091 Modelling and Simulation of New Materials. Tenth Granada Lectures, Granada, Spain, 15–19 September 2008. pp 185–197. https://doi.org/10.1063/1.3082279

  36. Stokely K, Mazza MG, Stanley HE, Franzese G (2010) Metastable water under pressure. In: Rzoska SJ, Drozd-Rzoska A, Mazur V A (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Proceedings of the NATO Advanced Research Workshop on Metastable Systems under Pressure: Platform for New Technologies and Environmental Applications, Odessa, Ukraine, 4–8 October 2008. Springer, Netherlands, pp 197–216. https://doi.org/10.1007/978-90-481-3408-3_14

  37. Franzese G, Stanley HE (2006) Understanding the unusual properties of water. In: Lynden-Bell RM, Conway S, Barrow JD, Finney JL, Harper C (eds) Water and Life. The Unique Properties of. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp 101–118. https://doi.org/10.1201/EBK1439803561-c7

  38. Bianco V, Ruberto R, Ancherbak S, Franzese G (2012) Water and anomalous liquids. In: Mallamace F, Stanley HE (eds) Complex Materials in Physics and Biology. Proceedings of the International School of Physics “Enrico Fermi.” IOS Press, The Netherlands, pp 113–128. https://doi.org/10.3254/978-1-61499-071-0-113

  39. Bianco V, Vilanova O, Franzese G (2013) Going deep into supercooled water. In: Fernández D, Frob M B, Latella I, Dector A (eds) Proceedings of the Barcelona Postgrad Encounters on Fundamental Physics. Barcelona: Facultat de Física. Universitat de Barcelona; Charleston, Spain, pp 103–126. https://cataleg.ub.edu/record=b2082772~S1*cat

  40. Bianco V, Vilanova O, Franzese G (2013) Polyamorphism and polymorphism of a confined water monolayer: liquid-liquid critical point, liquid-crystal and crystal-crystal phase transitions. In: Viswanathan GM, Raposo EP, da Luz MGE (eds) Perspectives and Challenges in Statistical Physics and Complex Systems for the Next Decade. World Scientific, Singapore, pp 126–149. https://doi.org/10.1142/9789814590143_0008

  41. Franzese G, Stanley HE (2007) The widom line of supercooled water. J Phys Condens Matter 19:205126. https://doi.org/10.1088/0953-8984/19/20/205126

    Article  ADS  Google Scholar 

  42. Kumar P, Franzese G, Stanley HE (2008) Predictions of dynamic behavior under pressure for two scenarios to explain water anomalies. Phys Rev Lett 100:105701. https://doi.org/10.1103/PhysRevLett.100.105701

    Article  ADS  Google Scholar 

  43. Kumar P, Franzese G, Stanley HE (2008) Dynamics and thermodynamics of water. J Phys Condens Matter 20:244114. https://doi.org/10.1088/0953-8984/20/24/244114

    Article  ADS  Google Scholar 

  44. Stokely K, Mazza MG, Stanley HE, Franzese G (2010) Effect of hydrogen bond cooperativity on the behavior of water. Proc Natl Acad Sci 107:1301–1306. https://doi.org/10.1073/pnas.0912756107

    Article  ADS  Google Scholar 

  45. Mazza MG, Stokely K, Stanley HE, Franzese G (2012) Effect of pressure on the anomalous response functions of a confined water monolayer at low temperature. J Chem Phys 137:204502. https://doi.org/10.1063/1.4767355

    Article  ADS  Google Scholar 

  46. Mazza MG, Stokely K, Pagnotta SE, Bruni F, Stanley HE, Franzese G (2011) More than one dynamic crossover in protein hydration water. Proc Natl Acad Sci USA 108:19873. https://doi.org/10.1073/pnas.1104299108

    Article  ADS  Google Scholar 

  47. Franzese G, De los Santos F (2009) Dynamically slow processes in supercooled water confined between hydrophobic plates. J Phys Condens Matter 21:504107. https://doi.org/10.1088/0953-8984/21/50/504107

  48. Franzese G, Hernando-Martinez A, Kumar P, Mazza MG, Stokely K, Strekalova EG, De los Santos F, Stanley HE (2010) Phase transitions and dynamics in bulk and interfacial water. J Phys Condens Matter 22:284103. https://doi.org/10.1088/0953-8984/22/28/284103

  49. Strekalova EG, Mazza MG, Stanley HE, Franzese G (2011) Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement. Phys Rev Lett 106:145701. https://doi.org/10.1103/PhysRevLett.106.145701

    Article  ADS  Google Scholar 

  50. De los Santos F, Franzese G (2011) Understanding diffusion and density anomaly in a coarse-grained model for water confined between hydrophobic walls. J Phys Chem B 115:14311. https://doi.org/10.1021/jp206197t

  51. Strekalova EG, Corradini D, Mazza MG, Buldyrev SV, Gallo P, Franzese G, Stanley HE (2012) Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water. J Biol Phys 38:97. https://doi.org/10.1007/s10867-011-9241-9

    Article  Google Scholar 

  52. Strekalova EG, Mazza MG, Stanley HE, Franzese G (2012) Hydrophobic nanoconfinement suppresses fluctuations in supercooled water. J Phys: Condens Matter 24:064111. https://doi.org/10.1088/0953-8984/24/6/064111

    Article  ADS  Google Scholar 

  53. De los Santos F, Franzese G (2012) Relations between the diffusion anomaly and cooperative rearranging regions in a hydrophobically nanoconfined water monolayer. Rapid Commun Phys Rev E 85:010602. https://doi.org/10.1103/PhysRevE.85.010602

  54. Bianco V, Franzese G (2014) Critical behavior of a water monolayer under hydrophobic confinement. Sci Rep (Nature Publishing Group) 4:4440. https://doi.org/10.1038/srep04440

    Article  Google Scholar 

  55. Franzese G, Stokely K, Chu XQ, Kumar P, Mazza MG, Chen SH, Stanley HE (2008) Pressure effects in supercooled water: comparison between a 2D model of water and experiments for surface water on a protein. J Phys Condens Matter 20:494210. https://doi.org/10.1088/0953-8984/20/49/494210

    Article  Google Scholar 

  56. Stanley H E, Kumar P, Xu L, Franzese G, Yan Z, Mazza MG, Chen S H, Mallamace F, Buldyrev SV (2007) Liquid polyamorphism: some unsolved puzzles of water in bulk, nanoconfined, and biological environments. In: Tokuyama M, Oppenheim I, Nishiyama H (eds) International Conference on Flow Dynamics, AIP Conference Proceedings, vol 982, pp 251–271. https://doi.org/10.1063/1.2897798

  57. Kumar P, Franzese G, Buldyrev S, Stanley H (2009) Dynamics of water at low temperatures and implications for biomolecules. In: Franzese G, Rubi M (eds) Aspects of Physical Biology. Lecture Notes in Physics, vol. 752, Springer, Heidelberg, pp 3–22. https://doi.org/10.1007/978-3-540-78765-5_1

  58. Stanley HE, Kumar P, Han S, Mazza MG, Stokely K, Buldyrev SV, Franzese G, Mallamace F, Xu L (2009) Heterogeneities in confined water and protein hydration water. J Phys Condens Matter 21(50):504105. https://doi.org/10.1088/0953-8984/21/50/504105

    Article  Google Scholar 

  59. Stanley HE, Buldyrev SV, Franzese G, Kumar P, Mallamace F, Mazza MG, Stokely K, Xu L (2010) Liquid polymorphism: water in nanoconfined and biological environments. J Phys Condens Matter 22:284101. https://doi.org/10.1088/0953-8984/22/28/284101

    Article  Google Scholar 

  60. Stanley HE, Buldyrev SV, Kumar P, Mallamace F, Mazza MG, Stokely K, Xu L, Franzese G (2011) Water in nanoconfined and biological environments. J Non-Cryst Solids 357:629. https://doi.org/10.1016/j.jnoncrysol.2010.07.029

    Article  ADS  Google Scholar 

  61. Franzese G, Bianco V, Iskrov S (2011) Water at interface with proteins. Food Biophys 6:186. https://doi.org/10.1007/s11483-010-9198-4

    Article  Google Scholar 

  62. Bianco V, Iskrov S, Franzese G (2012) Effect of hydrogen bonds on protein stability. J Biol Phys 38:27

    Article  Google Scholar 

  63. Franzese G, Bianco V (2013) Water at biological and inorganic interfaces. Food Biophys 8:153. https://doi.org/10.1007/s11483-013-9310-7

    Article  Google Scholar 

  64. Bianco V, Franzese G (2015) Contribution of water to pressure and cold denaturation of proteins. Phys Rev Lett 115:108101. https://doi.org/10.1103/PhysRevLett.115.108101

    Article  ADS  Google Scholar 

  65. Bianco V, Pagès N, Coluzza I, Franzese G (2017) How the stability of a folded protein depends on interfacial water properties and residue-residue interactions. J Mol Liq 245:129. https://doi.org/10.1016/j.molliq.2017.08.026

    Article  Google Scholar 

  66. Bianco V, Franzese G, Dellago C, Coluzza I (2017) Role of water in the selection of stable proteins at ambient and extreme thermodynamic conditions. Phys Rev X 7:021047. https://doi.org/10.1103/PhysRevX.7.021047

    Article  Google Scholar 

  67. Vilanova O, Bianco V, Franzese G (2017) Multi-scale approach for self-Assembly and protein folding. In: Coluzza I (ed) Design of Self-Assembling Materials. Springer, Cham, pp 107–128. https://doi.org/10.1007/978-3-319-71578-0_5

  68. Bianco V, Franzese G, Coluzza I (2019) Cover feature: In silico evidence that protein unfolding is a precursor of protein aggregation. Chem Phys Chem 21(5):377–384. https://doi.org/10.1002/cphc.201900904

    Article  Google Scholar 

  69. March D, Bianco V, Franzese G (2021) Protein unfolding and aggregation near a hydrophobic interface, polymers 13:1-156. https://doi.org/10.3390/polym13010156

  70. Miyazawa S, Jernigan R (1985) Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation, Macromolecules 18:3:534–552. https://doi.org/10.1021/ma00145a039Coluzza

  71. (2017) Computational protein design: a review. J Phys Condens. Matter 29:143001. https://doi.org/10.1088/1361-648X/aa5c76

  72. Fung HK, Welsh WJ, Floudas CA (2008) Computational de novo peptide and protein design: rigid templates versus flexible templates Ind. Eng Chem Res 47:993–1001. https://doi.org/10.1021/ie071286k

    Article  Google Scholar 

  73. Samish I, Macdermaid C, Perez-Aguilar J, Saven J (2011) Theoretical and computational protein design. Ann Rev Phys Chem 62:129–149. https://doi.org/10.1146/annurev-physchem-032210-103509

    Article  ADS  Google Scholar 

  74. Coluzza I, Muller HG, Frenkel D (2003) Designing refoldable model molecules. Phys Rev E 68:046703. https://doi.org/10.1103/PhysRevE.68.046703

    Article  ADS  Google Scholar 

  75. Coluzza I (2011) A coarse-grained approach to protein design: learning from design to understand folding. PLoS ONE 6(7):e20853. https://doi.org/10.1371/journal.pone.0020853

    Article  ADS  Google Scholar 

  76. Das R, Baker D (2008) Macromolecular modeling with Rosetta Ann. Rev Biochem 77:363–382. https://doi.org/10.1146/annurev.biochem.77.062906.171838

    Article  Google Scholar 

  77. Vendruscolo M (1998) Protein stability and foldability-designability complementarity. Phys A 249(1–4):576–580. https://doi.org/10.1016/S0378-4371(97)00518-9

    Article  Google Scholar 

  78. Pucci F, Rooman M (2017) Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 42:117–128. https://doi.org/10.1016/j.sbi.2016.12.007

    Article  Google Scholar 

  79. Tzul FO, Schweiker KL, Makhatadze GI (2015) Modulation of folding energy landscape by charge-charge interactions: linking experiments with computational modeling. Proc Natl Acad Sci U S A 112(3):E259–E266. https://doi.org/10.1073/pnas.1410424112

    Article  ADS  Google Scholar 

  80. Katava M, Marchi M, Madern D, Sztucki M, Maccarini M, Sterpone F (2020) Temperature unmasks allosteric propensity in a thermophilic malate dehydrogenase via dewetting and collapse. J Phys Chem B 124(6):1001–1008. https://doi.org/10.1021/acs.jpcb.9b10776

    Article  Google Scholar 

  81. Chakraborty D, Taly A, Sterpone F (2015) Stay wet, stay stable? how internal water helps the stability of thermophilic proteins. J Phys Chem B 119(40):12760–12770. https://doi.org/10.1021/acs.jpcb.5b05791

    Article  Google Scholar 

  82. Rahaman O, Kalimeri M, Melchionna S, Hénin J, Sterpone F (2015) Role of internal water on protein thermal stability: the case of homologous G domains. J Phys Chem B 119(29):8939–8949. https://doi.org/10.1021/jp507571u

    Article  Google Scholar 

  83. Gross M, Jaenicke R (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617. https://doi.org/10.1111/j.1432-1033.1994.tb18774.x

  84. Floriano WB, Nascimento MA, Domont GB, Goddard WA (1998) Effects of pressure on the structure of metmyoglobin: molecular dynamics predictions for pressure unfolding through a molten globule intermediate. Protein Sci 7(11):2301–2313. https://doi.org/10.1002/pro.5560071107

    Article  Google Scholar 

  85. Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595:11. https://doi.org/10.1016/s0167-4838(01)00332-6

    Article  Google Scholar 

  86. Fukuchi S, Nishikawa K (2001) Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309(4):835–843. https://doi.org/10.1006/jmbi.2001.4718

    Article  Google Scholar 

  87. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article  Google Scholar 

  88. Ross CA, Poirier MA (2005) What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6:891–898. https://doi.org/10.1038/nrm1742

    Article  Google Scholar 

  89. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. https://doi.org/10.1038/nrd3050

    Article  Google Scholar 

  90. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396. https://doi.org/10.1038/nrm3810

    Article  Google Scholar 

  91. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336. https://doi.org/10.1023/A:1025771421906

    Article  Google Scholar 

  92. Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M (2007) Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci 32:204–206. https://doi.org/10.1016/j.tibs.2007.03.005

    Article  Google Scholar 

  93. Song J (2009) Insight into ‘‘insoluble proteins” with pure water. FEBS Lett 583:953–959. https://doi.org/10.1016/j.febslet.2009.02.022

    Article  Google Scholar 

  94. Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15(1):3–16. https://doi.org/10.1016/j.semcdb.2003.12.008

  95. Cellmer T, Bratko D, Prausnitz JM, Blanch HW (2007) Protein aggregation in silico. Trends Biotechnol 25(6):254–261. https://doi.org/10.1016/j.tibtech.2007.03.011

    Article  Google Scholar 

  96. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete N-V, Coté S, De SA, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P (2015) Amyloid beta protein and Alzheimer’s disease: when computer simulations complement experimental studies. Chem Rev 115:3518–3563. https://doi.org/10.1021/cr500638n

    Article  Google Scholar 

  97. Bianco V, Alonso-Navarro M, Di Silvio D, Moya S, Cortajarena AL, Coluzza I (2019) Proteins are solitary! Pathways of protein folding and aggregation in protein mixtures. J Phys Chem Lett 10:4800–5480. https://doi.org/10.1021/acs.jpclett.9b01753

    Article  Google Scholar 

  98. Koga R, Yamamoto M, Kosugi T, Kobayashi N, Sugiki T, Fujiwara T, Koga N (2020) Robust folding of a de novo designed ideal protein even with most of the core mutated to valine. Proc Natl Acad Sci U S A 117(49):31149–31156. https://doi.org/10.1073/pnas.2002120117

    Article  Google Scholar 

Download references

Acknowledgements

G.F. acknowledges the support of the Spanish Grant N. PGC2018-099277-B-C22 (MCIU/AEI/ERDF) and the support by ICREA Foundation (ICREA Academia prize). I.C. acknowledges the support of the Maria de Maeztu Units of Excellence Programme – Grant No. MDM-2017-0720 Spanish Ministry of Science, Innovation and Universities, the Austrian Science Fund (FWF) project 26253-N27, the Spanish Ministerio de Economià y Competitividad (MINECO) Grant. N. FIS2017-89471-R, the Programa Red Guipuzcoana de Ciencia, Tecnología y Informacion SN 2019-CIEN-000051-01, the BIKAINTEK program (grant No. 008- B1/2020), the COST Action CA17139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Franzese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franzese, G., Rojas, J.À., Bianco, V., Coluzza, I. (2022). Water Contribution to the Protein Folding and Its Relevance in Protein Design and Protein Aggregation. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_1

Download citation

Publish with us

Policies and ethics