Skip to main content

A Robust Implementation for Solving the S-Unit Equation and Several Applications

  • Conference paper
  • First Online:
Arithmetic Geometry, Number Theory, and Computation

Abstract

Let K be a number field, and S a finite set of places in K containing all infinite places. We present an implementation for solving the S-unit equation x + y = 1, \(x,y \in \mathcal {O}_{K,S}^\times \) in the computer algebra package SageMath. This paper outlines the mathematical basis for the implementation. We discuss and reference the results of extensive computations, including exponent bounds for solutions in many fields of small degree for small sets S. As an application, we prove an asymptotic version of Fermat’s Last Theorem for totally real cubic number fields with bounded discriminant where 2 is totally ramified. In addition, we use the implementation to find all solutions to some cubic Ramanujan-Nagell equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also the recent translation [17] by Fuchs.

  2. 2.

    It is worth mentioning the recent results of von Känel and Matschke [42], who solve S-unit equations using modularity.

  3. 3.

    Note s d in [34] has the value t − 1 in our notation.

References

  1. A. Baker. Linear forms in the logarithms of algebraic numbers. I, II, III. Mathematika 13 (1966), 204-216; ibid. 14 (1967), 102-107; ibid., 14:220–228, 1967.

    Google Scholar 

  2. A. Baker and H. Davenport. The equations 3x 2 − 2 = y 2 and 8x 2 − 7 = z 2. Quart. J. Math. Oxford, 20(2):129-137, 1969.

    Article  MathSciNet  Google Scholar 

  3. A. Baker and G. Wüstholz. Logarithmic forms and group varieties. J. Reine Angew. Math., 442:19–62, 1993.

    MathSciNet  MATH  Google Scholar 

  4. A. Baker and G. Wüstholz. Logarithmic forms and Diophantine geometry, volume 9 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2007.

    MATH  Google Scholar 

  5. M. Bauer and M. A. Bennett. Ramanujan-Nagell cubics. Rocky Mountain J. Math., 48(2):385–412, 2018.

    Article  MathSciNet  Google Scholar 

  6. M. A. Bennett, A. Gherga, and A. Rechnitzer. Computing elliptic curves over \(\mathbb {Q}\). Math. Comp., 88(317):1341–1390, 2019.

    Google Scholar 

  7. M. A. Bennett and C. M. Skinner. Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math., 56(1):23–54, 2004.

    Article  MathSciNet  Google Scholar 

  8. A. Brumer. On the units of algebraic number fields. Mathematika, 14:121–124, 1967.

    Article  MathSciNet  Google Scholar 

  9. Y. Bugeaud, M. Mignotte, and S. Siksek. Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation. Compos. Math., 142(1):31–62, 2006.

    Google Scholar 

  10. Y. Bugeaud and T. N. Shorey. On the number of solutions of the generalized Ramanujan-Nagell equation. J. Reine Angew. Math., 539:55–74, 2001.

    MathSciNet  MATH  Google Scholar 

  11. J. H. E. Cohn. The Diophantine equation x 2 + C = y n. Acta Arith., 65(4):367–381, 1993.

    Article  MathSciNet  Google Scholar 

  12. B. M. M. de Weger. Solving exponential Diophantine equations using lattice basis reduction algorithms. J. Number Theory, 26(3):325–367, 1987.

    Article  MathSciNet  Google Scholar 

  13. B. M. M. de Weger. Algorithms for Diophantine Equations. PhD thesis, Universiteit Leiden, 1988.

    Google Scholar 

  14. B. M. M. de Weger. Algorithms for Diophantine equations, volume 65 of CWI Tract. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

    Google Scholar 

  15. J.-H. Evertse and K. Győry. Unit equations in Diophantine number theory, volume 146 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2015.

    Google Scholar 

  16. N. Freitas and S. Siksek. The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields. Compos. Math., 151(8):1395–1415, 2015.

    Article  MathSciNet  Google Scholar 

  17. C. Fuchs. On some applications of Diophantine approximations, volume 2 of Quaderni/Monographs. Edizioni della Normale, Pisa, 2014. A translation of Carl Ludwig Siegel’s “Über einige Anwendungen diophantischer Approximationen” by Clemens Fuchs, With a commentary and the article “Integral points on curves: Siegel’s theorem after Siegel’s proof” by Fuchs and Umberto Zannier, Edited by Zannier.

    Google Scholar 

  18. K. Győry. On the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helv., 54(4):583–600, 1979.

    Google Scholar 

  19. K. Győry. Bounds for the solutions of S-unit equations and decomposable form equations II. arXiv:1901.11289, January 2019.

    Google Scholar 

  20. K. Győry and K. Yu. Bounds for the solutions of S-unit equations and decomposable form equations. Acta Arithmetica, 123(1):9–41, 2006.

    Google Scholar 

  21. H. Hasse. Number theory. Classics in Mathematics. Springer-Verlag, Berlin, german edition, 2002. Reprint of the 1980 English edition [Springer, Berlin; MR0562104 (81c:12001b)], Edited and with a preface by Horst Günter Zimmer.

    Google Scholar 

  22. F. Jarvis and P. Meekin. The Fermat equation over \(\mathbb {Q}(\sqrt {2})\). J. Number Theory, 109(1):182–196, 2004.

    Google Scholar 

  23. A. Koutsianas. Computing all elliptic curves over an arbitrary number field with prescribed primes of bad reduction. Experimental Mathematics, 2017.

    Google Scholar 

  24. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982.

    Article  MathSciNet  Google Scholar 

  25. K. Mahler. Zur Approximation algebraischer Zahlen. I. Math. Ann., 107(1):691–730, 1933.

    Google Scholar 

  26. B. Malmskog and C. Rasmussen. Picard curves over \(\mathbb {Q}\) with good reduction away from 3. LMS J. Comput. Math., 19(2):382–408, 2016.

    Google Scholar 

  27. J. R. Merriman and N. P. Smart. Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point. Math. Proc. Cambridge Philos. Soc., 114(2):203–214, 1993.

    Article  MathSciNet  Google Scholar 

  28. T. Nagell. The Diophantine equation x 2 + 7 = 2n. Ark. Mat., 4:185–187, 1961.

    Article  MathSciNet  Google Scholar 

  29. A. Pethö and B. M. M. de Weger. Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation. Math. Comp., 47(176):713–727, 1986.

    Google Scholar 

  30. S. Ramanujan. Question #464. J. Indian Math. Soc., 5:120, 1913.

    Google Scholar 

  31. Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.4), 2018.

    Google Scholar 

  32. M. H. Şengün and S. Siksek. On the asymptotic Fermat’s last theorem over number fields. Comment. Math. Helv., 93(2):359–375, 2018.

    Article  MathSciNet  Google Scholar 

  33. C. L. Siegel. Über einige anwendungen diophantischer approximationen. Abh. der Preuss. Akad. der Wissenschaften Phys. Math. Kl., 1:209–266, 1929.

    MATH  Google Scholar 

  34. N. P. Smart. The solution of triangularly connected decomposable form equations. Math. Comp., 64(210):819–840, 1995.

    Article  MathSciNet  Google Scholar 

  35. N. P. Smart. S-unit equations, binary forms and curves of genus 2. Proc. London Math. Soc. (3), 75(2):271–307, 1997.

    Article  MathSciNet  Google Scholar 

  36. N. P. Smart. The algorithmic resolution of Diophantine equations, volume 41 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  37. N. P. Smart. Determining the small solutions to S-unit equations. Math. Comp., 68(228):1687–1699, 1999.

    Article  MathSciNet  Google Scholar 

  38. A. Thue. Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math., 135:284–305, 1909.

    Article  MathSciNet  Google Scholar 

  39. N. Tzanakis and B. M. M. de Weger. On the practical solution of the Thue equation. J. Number Theory, 31(2):99–132, 1989.

    Article  MathSciNet  Google Scholar 

  40. N. Tzanakis and B. M. M. de Weger. Solving a specific Thue-Mahler equation. Math. Comp., 57(196):799–815, 1991.

    Article  MathSciNet  Google Scholar 

  41. N. Tzanakis and B. M. M. de Weger. How to explicitly solve a Thue-Mahler equation. Compositio Math., 84(3):223–288, 1992.

    MathSciNet  MATH  Google Scholar 

  42. R. von Känel and B. Matschke. Solving S-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture. Preprint, arXiv:1605.06079, 2016.

    Google Scholar 

  43. K. Wildanger. Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern. J. Number Theory, 82(2):188–224, 2000.

    Article  MathSciNet  Google Scholar 

  44. K. Yu. Linear forms in p-adic logarithms. Acta Arith., 53(2):107–186, 1989.

    Article  MathSciNet  Google Scholar 

  45. K. Yu. Linear forms in p-adic logarithms. II. Compositio Math., 74(1):15–113, 1990.

    Google Scholar 

  46. K. Yu. Linear forms in p-adic logarithms. III. Compositio Math., 91(3):241–276, 1994.

    Google Scholar 

  47. K. Yu. p-adic logarithmic forms and group varieties. III. Forum Math., 19(2):187–280, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarado, A., Koutsianas, A., Malmskog, B., Rasmussen, C., Vincent, C., West, M. (2021). A Robust Implementation for Solving the S-Unit Equation and Several Applications. In: Balakrishnan, J.S., Elkies, N., Hassett, B., Poonen, B., Sutherland, A.V., Voight, J. (eds) Arithmetic Geometry, Number Theory, and Computation. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-030-80914-0_1

Download citation

Publish with us

Policies and ethics