Skip to main content

An Overview of Aircraft Electric Power System for Sustainable Aviation

  • Chapter
  • First Online:
New Frontiers in Sustainable Aviation

Part of the book series: Sustainable Aviation ((SA))

Abstract

A greener aviation application is needed due to recent increases in air travel and transportation, operating and maintenance costs of aircraft, and limited fossil fuels used in the aircraft which need to be reduced. Environmental concerns caused by climate change and global warming have opened the door to new approaches in aviation, allowing the transition from conventional aircraft to more electrical crafts. Electrical systems have been replaced with the traditional mechanical, hydraulic, and pneumatic energy systems for the demand of lighter and more efficient aircraft design, and thus, major innovations in aircraft power systems, such as power electronics, electrical load management, energy storage, thermal management, power generation, and distribution, have been seen. In this study, advances in aircraft power systems for sustainable and more efficient aviation experience are examined from a technological perspective, considering environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABAC:

Active bridge active clamp

ACARE:

Advisory Council of Aviation Research

AEA:

All-electric aircraft

ANPC:

Active neutral point converter

ATRU:

Auto-transformer rectifier unit

ATU:

Auto-transformer unit

BDFM:

Brushless doubly-fed machines

CO2:

Carbon dioxide

DAB:

Dual active bridge

EMC:

Electromagnetic compatibility

EMI:

Electromagnetic interference

END:

Environmental noise directive

EPA:

Electric propulsion aircraft

EPS:

Electric power system

FC:

Fuel cells

GaN:

Gallium nitride

GHG:

Greenhouse gas

IATA:

International Air Transport Association

IBCI:

Interleaved boost with coupled inductors

IDG:

Integrated drive generators

IEA:

International Energy Agency

IGBT:

Insulated-gate bipolar transistor

IM:

Induction motor

MC:

Matrix converter

MEA:

More electric aircraft

MOSFET:

Metal-oxide-semiconductor field-effect transistor

NASA:

National Aeronautics and Space Administration

NOx:

Oxides of nitrogen

NPC:

Neutral point clamped

NRA:

NASA research announcement

PMSM:

Permanent magnet synchronous machines

PWM:

Pulse width modulation

RCTA:

Radio Technical Commission for Aeronautics

RPDU:

Remote power distribution units

SiC:

Silicon carbide

SP:

Specific power

SRM:

Synchronous reluctance machines

SSPC:

Solid-state power controllers

TMS:

Thermal management systems

TNPC:

T-type NPC

TRU:

Transformer rectifier unit

VCSQC:

Variable cross-section wet coil

VFG:

Variable frequency generator

VSI:

Voltage source inverter

WFSM:

Wound field synchronous machine

References

  • Airbus. Zephyr- Pioneering the Stratosphere. https://www.airbus.com/defence/uav/zephyr.html (2018). Accessed 07 Dec 2020

  • Airbus. City Airbus. https://www.airbus.com/innovation/zero-emission/urban-air-mobility/cityairbus.html (2020). Accessed 05 Dec 2020

  • Anton, F., eAircraft : Hybrid-elektrische Antriebe für Luftfahrzeuge. https://www.bbaa.de/fileadmin/user_upload/02-preis/02-02-preistraeger/newsletter-2019/02-2019-09/02_Siemens_Anton.pdf (2019). Accessed 01 Sept 2020

  • Arotech. Zinc-Air batteries. https://www.arotech.com (2020). Accessed 15 Sept 2020

  • Aurora. Boeing Aurora. https://www.aurora.aero (2020). Accessed 05 Dec2020

  • Blaabjerg, F. (ed.): Control of Power Electronic Converters and Systems. Academic Press, London (2018)

    Google Scholar 

  • Borovic, U., Zhao, S., Silva, M. et al.: Comparison of three-phase active rectifier solutions for avionic applications: Impact of the avionic standard DO-160 F and failure modes. Paper presented in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 18–22 Sept 2016

    Google Scholar 

  • Bowman, C.L., Marien, T.V., Felder, J.L.: Turbo- and Hybrid-Electrified Aircraft Propulsion for Commercial Transport. Paper presented in 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, 9–11 July 2018

    Google Scholar 

  • Bradley, M.K., Allen, T.J., Droney, C.K.: Subsonic Ultra Green Aircraft Research Phase II – Volume I – Truss Braced Wing Design Exploration. https://ntrs.nasa.gov/citations/20150017036 (2015). Accessed 01 Sept 2020

  • Buchmann, I.: Safety of lithium-ion batteries. Cadex Electronics https://www.cadex.com/en/batteries/safety-of-lithium-ion-batteries (2016). Accessed 09 Dec 2020

  • Buticchi, G., Costa, L., Liserre, M.: DC/DC conversion solutions to enable smart-grid behavior in the aircraft electrical power distribution system. Paper presented at the 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 29 Oct- 1 Nov 2017

    Google Scholar 

  • CDIAC. Global Carbon Budget 2016. https://cdiac.ess-dive.lbl.gov/GCP/carbonbudget/2016 (2016). Accessed 10 Sept 2020

  • Chen, H., Mode, A.W.: Research on 270V / 28V aviation bidirectional DC / DC converter. Paper presented in CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018), Guiyang, 19–22 June 2018

    Google Scholar 

  • Chen, H., Cong, T.N., Yang, W., et al.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

    Article  Google Scholar 

  • Chen, L., Tarisciotti, L., Costabeber, A. et al.: Advanced modulation for the Active-Bridge-Active-Clamp (ABAC) converter. Paper presented in 2017 IEEE Southern Power Electronics Conference (SPEC), Puero Varas, 4–7 Dec 2017

    Google Scholar 

  • Chen, L., Tarisciotti, L., Costabeber, A., et al.: Phase-shift modulation for a current-fed isolated DC–DC converter in more electric aircrafts. IEEE Trans. Power Electron. 34(9), 8528–8543 (2019)

    Article  Google Scholar 

  • Crittenden, M.: Ultralight batteries for electric airplanes. IEEE Spectr. 57(9), 44–49 (2020)

    Article  Google Scholar 

  • Dareck, M., Edelstenn, C., Ender, T.: Flightpath 2050 Europe’s Vision for Aviation. https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf (2011). Accessed 05 Sept 2020

  • De Doncker, R.W., Divan, D.M., Kheraluwala, M.H.: A three-phase soft-switched high power density DC/DC converter for high power applications. Paper presented in Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting, Pittsburgh, 2–7 Oct 1988

    Google Scholar 

  • Demirel, O., Arifoglu, U., Kalayci, K.: Novel three-level T-type isolated bidirectional DC–DC converter. IET Power Electron. 12(1), 61–71 (2019)

    Article  Google Scholar 

  • Dorn-gomba, L., Ramoul, J., Reimers, J., et al.: Power electronic converters in electric aircraft : current status , challenges, and emerging technologies. IEEE Trans. Transp. 6(4), 1648–1664 (2020)

    Google Scholar 

  • European Environment Agency. Environmental noise in Europe – 2020. https://www.eea.europa.eu/publications/environmental-noise-in-europe (2020). Accessed 07 Dec 2020

  • Freeman, J., Osterkamp, P., Green, M., et al.: Challenges and opportunities for electric aircraft thermal management. Aircr. Eng. Aerosp. Technol. 86(6), 519–524 (2014)

    Article  Google Scholar 

  • Gnadt, A.R., Speth, R.L., Sabnis, J.S., et al.: Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Prog. Aerosp. Sci. 105, 1–30 (2019)

    Article  Google Scholar 

  • Hornung, M., Isikveren, A.T., Cole, M. et al: Ce-Liner – Case Study for eMobility in Air Transportation. Paper presented in 2013 Aviation Technology, Integration, and Operations Conference, Los Angeles, 12–14 Aug 2013

    Google Scholar 

  • IATA. Aircraft Technology Roadmap to 2050. https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/technology20roadmap20to20205020no20foreword.pdf (2019). Accessed 05 Sept 2020

  • IEA. Global energy and CO2 emissions in 2020. https://www.iea.org/reports/global-energy-review-2020 (2020). Accessed 08 Oct 2020

  • Jansen, R., Bowman, C., Jankovsky, A. et al.: Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports. Paper presented at the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, 10–12 July 2017

    Google Scholar 

  • Jansen, R., De Jesus-Arce, Y., Kascak, P. et al.: High Efficiency Megawatt Motor Conceptual Design. Paper presented in 2018 Joint Propulsion Conference, Ohio, 9–11 July 2018

    Google Scholar 

  • Japan Transport Safety Board, AI2014-4: Aircraft serious incident investigation report (2014)

    Google Scholar 

  • Karanayil, B., Ciobotaru, M., Agelidis, V.G.: Power flow Management of Isolated Multiport Converter for more electric aircraft. IEEE Trans. Power Electron. 32(7), 5850–5861 (2017)

    Article  Google Scholar 

  • Kolar, J.W., Ertl, H., Zach, F.C.: Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module. Paper presented in Proceedings of Applied Power Electronics Conference. APEC ‘96, San Jose, 3–7 Mar 1996

    Google Scholar 

  • Laloya, E., Lucía, Ó., Sarnago, H., et al.: Heat Management in Power Converters: from state of the art to future ultrahigh efficiency systems. IEEE Trans. Power Electron. 31(11), 7896–7908 (2016)

    Article  Google Scholar 

  • Li, Y., Dai, H.: Recent advances in zinc–air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)

    Article  Google Scholar 

  • Li, Z., Wang, H.: Comparative analysis of high step-down ratio isolated DC/DC topologies in PEV applications. Paper presented in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Lon Beach, 20–24 Mar 2016

    Google Scholar 

  • Lilium, GmbH Lilium Jet. https://lilium.com. (2020) Accessed 05 Dec 2020

  • Lim, Z., Liu, Y., Zhang, L. et al Design of 100 kVA SiC Power Converter for Aircraft Electric Starter Generator. Paper presented at the 4th Southern Power Electronics Conference (SPEC), Singapore, 10–13 Dec 2018

    Google Scholar 

  • Liu, B., Ren, R., Jones, E.A., et al.: A modulation compensation scheme to reduce input current distortion in GaN-based high switching frequency three-phase three-level Vienna-type rectifiers. IEEE Trans. Power Electron. 33(1), 283–298 (2018)

    Article  Google Scholar 

  • Liu, Y., He, J., Ge, B., et al.: A simple space vector modulation of high-frequency AC linked three-phase-to-single-phase/DC converter. IEEE Access. 8, 59278–59289 (2020)

    Article  Google Scholar 

  • Madonna, V., Giangrande, P., Galea, M.: Electrical power generation in aircraft: review, challenges, and opportunities. IEEE Trans. Transp. Electrif. 4(3), 646–659 (2018)

    Article  Google Scholar 

  • McLallin, K.L., Jansen, R.H., Fausz, J. et al: Aerospace Flywheel Technology Development for IPACS Applications. Paper presented in 36th Intersociety Energy Conversion Engineering Conference, Savannah, 29 Jul- 01 Aug 2001

    Google Scholar 

  • Modeer, T., Pallo, N., Foulkes, T., et al.: Design of a GaN-based interleaved nine-level flying capacitor multilevel inverter for electric aircraft applications. IEEE Trans. Power Electron. 35(11), 12153–12165 (2020)

    Article  Google Scholar 

  • Murphy, E., King, E.A.: Environmental Noise Pollution: Noise Mapping, Public Health, and Policy. Elsevier, Burlington (2014)

    Book  Google Scholar 

  • Naayagi, R.T., Forsyth, A.J., Shuttleworth, R.: High-power bidirectional DC–DC converter for aerospace applications. IEEE Trans. Power Electron. 27(11), 4366–4379 (2012)

    Article  Google Scholar 

  • NASA. NASA Aeronautics: Strategic Implementation Plan-2017 Update. https://www.nasa.gov/sites/default/files/atoms/files/sip-2017-03-23-17-high.pdf (2015). Accessed 05 Sept 2020

  • NASA Glenn Research Center. Boeing Cryogenically Cooled Inverter. https://www1.grc.nasa.gov/aeronautics/eap/larger-aircraft/converters/cryogenically-cooled-inverter (2019). Accessed 10 Sept 2020

  • National Academies of Sciences, Engineering, and Medicine: Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. The National Academies Press, Washington, DC (2016)

    Google Scholar 

  • Nawawi, A., Tong, C.F., Yin, S., et al.: Design and demonstration of high power density inverter for aircraft applications. IEEE Trans. Ind. Appl. 53(2), 1168–1176 (2017)

    Article  Google Scholar 

  • Nikoleris, T., Gupta, G., Kistler, M.: Detailed estimation of fuel consumption and emissions during aircraft taxi operations at Dallas/Fort Worth international airport. Transp. Res. Part D Transp. Environ. 16(4), 302–308 (2011)

    Article  Google Scholar 

  • Panasonic. Panasonic Lithium Ion NCR18650B. https://industrial.panasonic.com/ww/products/batteries/secondary-batteries/lithium-ion (2012). Accessed 15 Sept 2020

  • Pipistrel Aircraft. Pipistrel Velis Electro. https://www.pipistrel-aircraft.com/aircraft/electric-flight/velis-electro-easa-tc (2020). Accessed 06 Dec 2020

  • Prasad, K.N.V., Kumar, G.R., Kiran, T.V. et al: Comparison of different topologies of cascaded H-Bridge multilevel inverter. Paper presented in 2013 International Conference on Computer Communication and Informatics, Coimbatore, 4–6 Jan 2013

    Google Scholar 

  • RCTA. User Guide Supplement to DO-160G. https://do160.org/rtca-do-160g (2014). Accessed 21 Sept 2020

  • Roboam, X., Sareni, B., Andrade, A.: More Electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft. IEEE Ind. Electron. Mag. 6(4), 6–17 (2012)

    Article  Google Scholar 

  • Rodriguez, J., Bernet, S., Steimer, P.K., et al.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2010)

    Article  Google Scholar 

  • Rtichie, H.: Sector by sector: where do global greenhouse gas emissions come from?. https://ourworldindata.org/ghg-emissions-by-sector (2020). Accessed 08 Dec 2020

  • Safaee, A., Bakhshai, A., Jain, P.: A resonant bidirectional dc-dc converter for aerospace applications. Paper presented in 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, 17–22 Sept 2011

    Google Scholar 

  • Sahoo, S., Zhao, Z., Kyprianidis, K.: A review of concepts, benefits, and challenges for future electrical propulsion-based aircraft. Aerospace. 7(4), 44 (2020)

    Article  Google Scholar 

  • Schefer, H., Fauth, L., Kopp, T.H.: Discussion on electric power supply systems for all Electric Aircraft. IEEE Access. 8, 84188–84216 (2020)

    Article  Google Scholar 

  • Schweizer, M., Kolar, J.W.: Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28(2), 899–907 (2013)

    Article  Google Scholar 

  • Sgouridis, S., Bonnefoy, P.A., Hansman, R.J.: Air transportation in a carbon constrained world: long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation. Transp. Res. Part A Policy Pract. 45(10), 1077–1091 (2011)

    Article  Google Scholar 

  • Shakib, S.M.S.I., Mekhilef, S.: A frequency adaptive phase shift modulation control based LLC series resonant converter for wide input voltage applications. IEEE Trans. Power Electron. 32(11), 8360–8370 (2017)

    Article  Google Scholar 

  • Shen, M., Wang, J., Joseph, A., et al.: Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans. Ind. Appl. 42(3), 770–778 (2006)

    Article  Google Scholar 

  • Sinnett, M.: Saving fuel and enhancing operational efficiencies. Aero Q. 4, 6–11 (2007)

    Google Scholar 

  • Solid Energy. HermesTM High Energy Rechargeable Metal Cells for Space. http://sustainableaviation.org/sas2017/session/hermes-high-energy-rechargeable-metal-cells-space/index.html (2017). Accessed 10 Oct 2020

  • Spiazzi, G., Buso, S.: Analysis of the interleaved isolated boost converter with coupled inductors. IEEE Trans. Ind. Electron. 62(7), 4481–4491 (2015)

    Article  Google Scholar 

  • Strasik, M., Johnson, P.E., Day, A.C., et al.: Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing. IEEE Trans. Appl. Supercond. 17(2), 2133–2137 (2007)

    Article  Google Scholar 

  • Stückl, S., van Toor, J., Lobentanzer, H.: Voltair- The All Electric Propulsion Concept Platform—A Vision for Atmospheric Friendly Flight. Paper presented in 28th International Congress of the Aeronautical Sciences, Brisbane, 23–28 Sept 2012

    Google Scholar 

  • Tariq, M., Maswood, A.I., Gajanayake, C.J., et al.: Aircraft batteries: current trend towards more electric aircraft. IET Electr. Syst. Transp. 7(2), 93–103 (2017)

    Article  Google Scholar 

  • Tarisciotti, L., Costabeber, A., Linglin, C. et al.: Evaluation of isolated DC/DC converter topologies for future HVDC aerospace microgrids. Paper presented in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, 1–5 Oct 2017

    Google Scholar 

  • Tarisciotti, L., Costabeber, A., Chen, L., et al.: Current-fed isolated DC/DC converter for future aerospace microgrids. IEEE Trans. Ind. Appl. 55(3), 2823–2832 (2019)

    Article  Google Scholar 

  • Trentin, A., de Lillo, L., Empringham, L., et al.: Experimental comparison of a direct matrix converter using Si IGBT and SiC MOSFETs. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 542–554 (2015)

    Article  Google Scholar 

  • Ventosa-Cutillas, A., Montero-Robina, P., Umbría, F., et al.: Integrated control and modulation for three-level NPC rectifiers. Energies. 12(9), 1–15 (2019)

    Article  Google Scholar 

  • Volocopter GmbH. Volocopter VC200. https://www.volocopter.com/en (2020). Accessed 05 Dec 2020

  • Walter, J., De Doncker, R.W.: High-power galvanically isolated DC/DC converter topology for future automobiles. Paper presented ate the 34th IEEE Annual Conference on Power Electronics Specialist, 2003. PESC ‘03, Acapulco, 15–19 June 2003

    Google Scholar 

  • Wheeler, P.: Technology for the more and all electric aircraft of the future. In: Paper presented at 2016 IEEE International Conference on Automatica (ICA-ACCA), Curico, 19–21 Oct 2016

    Google Scholar 

  • Wheeler, P.W., Rodríguez, J., Clare, J.C., et al.: Matrix converters: a technology review. IEEE Trans. Ind. Electron. 49(2), 276–288 (2002)

    Article  Google Scholar 

  • Wisk Aero. Wisk Cora. https://wisk.aero/cora (2020). Accessed 05 Dec 2020

  • Yin, S., Tseng, K.J., Simanjorang, R., et al.: A 50-kW high-frequency and high-efficiency SiC voltage source inverter for more electric aircraft. IEEE Trans. Ind. Electron. 64(11), 9124–9134 (2017)

    Article  Google Scholar 

  • Yoon, A., Yi, X., Martin, J. et al: A high-speed, high-frequency, air-core PM machine for aircraft application. Paper presented in 2016 IEEE Power and Energy Conference at Illinois (PECI), Urbana, 19–20 Feb 2016

    Google Scholar 

  • Zhang, B., Wang, S.: A survey of EMI research in power electronics systems with wide-bandgap semiconductor devices. IEEE J. Emerg. Sel. Top. Power Electron. 8(1), 626–643 (2020)

    Article  Google Scholar 

  • Zhang, Z., Bowman, C.L., O’Connell, T.C., et al.: Large electric machines for aircraft electric propulsion. IET Electr. Power Appl. 12(6), 767–779 (2018)

    Article  Google Scholar 

  • Zhang, D., He, J., Pan, D.: A megawatt-scale medium-voltage high-efficiency high power density ‘SiC+Si’ hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems. IEEE Trans. Ind. Appl. 55(6), 5971–5980 (2019a)

    Article  Google Scholar 

  • Zhang, D., He, J., Pan, D. et al: High power density medium-voltage megawatt-scale power converter for aviation hybrid-electric propulsion applications. Paper presented in 2019 IEEE Energy Convers. Congr. Expo. ECCE 2019, Balitmore, 29 Sept–3 Oct 2019b

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halime Hizarci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hizarci, H., Demirel, O., Kalayci, K., Arifoglu, U. (2022). An Overview of Aircraft Electric Power System for Sustainable Aviation. In: Karakoc, T.H., Colpan, C.O., Dalkiran, A. (eds) New Frontiers in Sustainable Aviation. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-80779-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80779-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80778-8

  • Online ISBN: 978-3-030-80779-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics