Skip to main content

Investigation of the Flow Generated by the Surface Discharge on the Cylinder Body in the Quiescent Air

  • Conference paper
  • First Online:
Progress in Turbulence IX (iTi 2021)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 267))

Included in the following conference series:

  • 564 Accesses

Abstract

By using the shadow and PIV methods, the flow patterns induced by the surface discharge on the circular cylinder in the stationary air are presented. It is shown that the flow around cylinder is a superposition of the near-wall vortex structure and radially-propagating jets. The averaged and pulsation components of the jet velocity for two levels of discharge power consumption (8.2 and 39 W) are determined by the LDA method. Based on the analysis of the velocity pulsation spectra, the presence of two inertial intervals with decrements round ‘–5/3’ for f < 20–30 Hz and ‘–7’ for f > 40 Hz is shown. For description flow pulsating near a plasma sheet, it is proposed to use a double-cascade model of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Schlichting, K. Gersten, Boundary Layer Theory, 8th edn. (Springer, Berlin, 2003)

    Google Scholar 

  2. P.K. Chang, Control of Flow Separation (Hemisphere Publishing Corporation, New York, 1976)

    Google Scholar 

  3. S. Grundmann, C. Tropea, Experimental damping of boundary-layer oscillations using DBD plasma actuators. Int. J. Heat Fluid Flow 30, 394–402 (2009)

    Article  Google Scholar 

  4. T.C. Corke, M.L. Post, D.M. Orlov, SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog. Aerosp. Sci. 43, 193–217 (2007)

    Article  Google Scholar 

  5. N. Benard, J. Jolibois, E. Moreau, R. Sosa, G. Artana, G. Touchard, Aerodynamic plasma actuators: a directional micro-jet device. Thin Solid Films 516, 6660–6667 (2008)

    Article  Google Scholar 

  6. A.V. Ivchenko, O.A. Zhuravliov, V.G. Shakhov, Comparative studies of cylinder’s aerodynamic features depending on propagation direction for the non-arcing surface discharge in subsonic flow, in Europhysics Conference Abstracts, vol. 33E (2009), pp. 1–4

    Google Scholar 

  7. H. Akbıyık, Y.E. Akansu, H. Yavuz, Active control of flow around a circular cylinder by using intermittent DBD plasma actuators. Flow Meas. Instrum. 53, 215–220 (2017)

    Article  Google Scholar 

  8. A.V. Ivchenko, P.E. Timchenko, V.P. Zakharov, V.L. Marinin, The properties of colliding surface discharges in air, in Europhysics Conference Abstracts, vol. 36F (2012), pp. 1-4

    Google Scholar 

  9. V. Samoilovich, V. Gibalov, K. Kozlov, Physical chemistry of the barrier discharge, DVS (1997)

    Google Scholar 

  10. G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  11. Z. Zhang, LDA Application Methods: Laser Doppler Anemometry for Fluid Dynamics (Springer Science & Business Media, Berlin, 2010)

    Google Scholar 

  12. M. Raffel, C.E. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer Science & Business Media, Berlin, 2001)

    Google Scholar 

  13. B. Kysela, J. Konfrest, Z. Chara, LDA measurements and turbulence spectral analysis in an agitated vessel. EPJ Web Conf. 45, 1–7 (2013). Article 01055

    Google Scholar 

  14. S. Moreau, G. Plantier, J.-C. Valière, H. Bailliet, L. Simon, Estimation of power spectral density from laser Doppler data via linear interpolation and deconvolution. Exp. Fluids 50, 179–188 (2011)

    Article  Google Scholar 

  15. G.N. Abramovich, Turbulent Jets of Air, Plasma, and Real Gas (Springer, Berlin, 2013)

    Google Scholar 

  16. P.G. Frick, Turbulence: Approaches and Models (2nd edn. in Russian) (‘R&C Daynamis’ Publish House, 2010)

    Google Scholar 

  17. U. Frisch, A.N. Kolmogorov, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  18. J.O. Hinze, Turbulence an introduction to its mechanism (McGraw-Hill Book Company, Inc., New York, 1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivchenko, A.V., Shakhov, V.G. (2021). Investigation of the Flow Generated by the Surface Discharge on the Cylinder Body in the Quiescent Air. In: Örlü, R., Talamelli, A., Peinke, J., Oberlack, M. (eds) Progress in Turbulence IX. iTi 2021. Springer Proceedings in Physics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-80716-0_39

Download citation

Publish with us

Policies and ethics